本文整理汇总了Python中chainer.functions.clip方法的典型用法代码示例。如果您正苦于以下问题:Python functions.clip方法的具体用法?Python functions.clip怎么用?Python functions.clip使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.functions
的用法示例。
在下文中一共展示了functions.clip方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pretraining
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def pretraining(optimizer):
logger.info('pretraining')
copy_grand_opt = copy.deepcopy(optimizer.grand_optimizer)
losses = []
for _ in range(10):
x = optimizer.optnet.xp.random.normal(
scale=10., size=(10000, 1)).astype('f')
g = optimizer.optnet.step(x)
# loss forcing g's sign to be the flip of input's sign
# theta = theta - c*gradient
# theta = theta + g
loss = F.mean(F.clip(g, 0, 100) * (x > 0)
+ F.clip(-g, 0, 100) * (x < 0))
optimizer.optnet.cleargrads()
loss.backward()
optimizer.meta_update()
optimizer.optnet.reset_state()
losses.append(loss.item())
logger.info('finished pretraining. losses {}'.format(losses))
optimizer.release_all()
# reset adam state
optimizer = nets.optnets.OptimizerByNet(optimizer.optnet, copy_grand_opt)
return optimizer, copy_grand_opt
示例2: get_aabb_corners
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def get_aabb_corners(grids, image_size):
_, _, height, width = grids.shape
grids = (grids + 1) / 2
x_points = grids[:, 0, ...] * image_size.width
y_points = grids[:, 1, ...] * image_size.height
x_points = F.clip(x_points, 0., float(image_size.width))
y_points = F.clip(y_points, 0., float(image_size.height))
top_left_x = F.get_item(x_points, [..., 0, 0])
top_left_y = F.get_item(y_points, [..., 0, 0])
top_right_x = F.get_item(x_points, [..., 0, width - 1])
top_right_y = F.get_item(y_points, [..., 0, width - 1])
bottom_right_x = F.get_item(x_points, [..., height - 1, width - 1])
bottom_right_y = F.get_item(y_points, [..., height - 1, width - 1])
bottom_left_x = F.get_item(x_points, [..., height - 1, 0])
bottom_left_y = F.get_item(y_points, [..., height - 1, 0])
top_left_x_aabb = F.minimum(top_left_x, bottom_left_x)
top_left_y_aabb = F.minimum(top_left_y, top_right_y)
bottom_right_x_aabb = F.maximum(top_right_x, bottom_right_x)
bottom_right_y_aabb = F.maximum(bottom_left_y, bottom_right_y)
return top_left_y_aabb, top_left_x_aabb, bottom_right_y_aabb, bottom_right_x_aabb
示例3: _elementwise_clip
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def _elementwise_clip(x, x_min, x_max):
"""Elementwise clipping
Note: chainer.functions.clip supports clipping to constant intervals
"""
return F.minimum(F.maximum(x, x_min), x_max)
示例4: _lossfun
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def _lossfun(self,
entropy, vs_pred, log_probs,
vs_pred_old, log_probs_old,
advs, vs_teacher):
prob_ratio = F.exp(log_probs - log_probs_old)
loss_policy = - F.mean(F.minimum(
prob_ratio * advs,
F.clip(prob_ratio, 1 - self.clip_eps, 1 + self.clip_eps) * advs))
if self.clip_eps_vf is None:
loss_value_func = F.mean_squared_error(vs_pred, vs_teacher)
else:
loss_value_func = F.mean(F.maximum(
F.square(vs_pred - vs_teacher),
F.square(_elementwise_clip(vs_pred,
vs_pred_old - self.clip_eps_vf,
vs_pred_old + self.clip_eps_vf)
- vs_teacher)
))
loss_entropy = -F.mean(entropy)
self.value_loss_record.append(float(loss_value_func.array))
self.policy_loss_record.append(float(loss_policy.array))
loss = (
loss_policy
+ self.value_func_coef * loss_value_func
+ self.entropy_coef * loss_entropy
)
return loss
示例5: numpy_clip
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def numpy_clip(a, a_min, a_max, out=None):
check_attribute_scalar(a_min, 'numpy.clip', 'a_min')
check_attribute_scalar(a_max, 'numpy.clip', 'a_max')
check_attribute_value(out, None, 'numpy.clip', 'out')
a = F.clip(a, a_min, a_max)
return a
示例6: forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def forward(self, x):
y1 = F.clip(x, -1.0, 1.0)
return y1
示例7: main
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def main():
np.random.seed(314)
x = np.random.rand(6, 4).astype(np.float32)
s_int = np.array(-10)
s_float = np.array(10.0)
testtools.generate_testcase(Sin(), [x], subname='sin')
testtools.generate_testcase(Sinh(), [x], subname='sinh')
testtools.generate_testcase(Sign(), [x], subname='sign')
testtools.generate_testcase(Cos(), [x], subname='cos')
testtools.generate_testcase(Cosh(), [x], subname='cosh')
testtools.generate_testcase(Tan(), [x], subname='tan')
testtools.generate_testcase(Tanh(), [x], subname='tanh')
testtools.generate_testcase(ArcSin(), [x], subname='arcsin')
testtools.generate_testcase(ArcCos(), [x], subname='arccos')
testtools.generate_testcase(ArcTan(), [x], subname='arctan')
testtools.generate_testcase(Exp(), [x], subname='exp')
testtools.generate_testcase(Log(), [x], subname='log')
testtools.generate_testcase(Clip(), [x], subname='clip')
testtools.generate_testcase(ClipNp(), [x], subname='clip_np')
testtools.generate_testcase(Abs(), [x], subname='abs')
testtools.generate_testcase(AbsNp(), [x], subname='abs_np')
testtools.generate_testcase(Sqrt(), [x], subname='sqrt')
testtools.generate_testcase(Round(), [x], subname='round')
testtools.generate_testcase(AbsBuiltin(), [x], subname='abs_builtin')
testtools.generate_testcase(AbsBuiltin(), [s_float], subname='abs_builtin_scalar_float')
testtools.generate_testcase(AbsBuiltin(), [s_int], subname='abs_builtin_scalar_int')
示例8: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def __call__(self, x):
x = self.head(x)
x = self.sigmoid(x)
if self.do_nms:
y = self.pool(x)
x = x * (y.array == x.array)
else:
eps = 1e-4
x = F.clip(x, x_min=eps, x_max=(1.0 - eps))
return x
示例9: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def __call__(self, x):
return F.clip(x, x_min=0.0, x_max=1.0)
示例10: __call__
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def __call__(self, x):
return F.clip(x, 0.0, 6.0)
示例11: _compute_ppo_loss
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def _compute_ppo_loss(self, obs, acts, at, vt, old_params):
params = self._pi_f(obs)
cv = F.flatten(self._vf_f(obs))
ratio = F.exp(self._logp(params, acts) - self._logp(old_params, acts))
surr1 = ratio * at
surr2 = F.clip(ratio, 1 - self._ppo_clipparam, 1 + self._ppo_clipparam) * at
ppo_surr_loss = (
-sym_mean(F.minimum(surr1, surr2))
+ self._ppo_klcoeff * sym_mean(self.kl(old_params, params))
+ sym_mean(F.square(cv - vt))
)
return ppo_surr_loss
示例12: check_forward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def check_forward(self, x_data):
x_min, x_max = self.x_min_max
x = chainer.Variable(x_data)
y = functions.clip(x, x_min, x_max)
self.assertEqual(y.data.dtype, self.dtype)
y_expect = self.x.copy()
for i in numpy.ndindex(self.x.shape):
if (x_min is not None) and (self.x[i] < x_min):
y_expect[i] = x_min
elif (x_max is not None) and (self.x[i] > x_max):
y_expect[i] = x_max
testing.assert_allclose(y_expect, y.data)
示例13: check_backward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def check_backward(self, x_data, y_grad):
def f(x):
x_min, x_max = self.x_min_max
return functions.clip(x, x_min, x_max)
gradient_check.check_backward(
f, x_data, y_grad, dtype=numpy.float64)
示例14: check_double_backward
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def check_double_backward(self, x_data, y_grad, gx_grad):
def f(x):
x_min, x_max = self.x_min_max
return functions.clip(x, x_min, x_max)
gradient_check.check_double_backward(
f, x_data, y_grad, gx_grad, dtype=numpy.float64, atol=1e-3)
示例15: test_invalid_interval
# 需要导入模块: from chainer import functions [as 别名]
# 或者: from chainer.functions import clip [as 别名]
def test_invalid_interval(self):
with self.assertRaises(ValueError):
functions.clip(self.x, 1.0, -1.0)