本文整理汇总了Python中chainer.cuda.get_device方法的典型用法代码示例。如果您正苦于以下问题:Python cuda.get_device方法的具体用法?Python cuda.get_device怎么用?Python cuda.get_device使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.cuda
的用法示例。
在下文中一共展示了cuda.get_device方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: give_conditionalized_cell
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def give_conditionalized_cell(self, src_batch, src_mask, noise_on_prev_word=False,
demux=False):
if self.lexical_probability_dictionary is not None:
lexicon_probability_matrix = compute_lexicon_matrix(
src_batch, self.lexical_probability_dictionary, self.Vo)
if self.xp != np:
lexicon_probability_matrix = cuda.to_gpu(
lexicon_probability_matrix, cuda.get_device(
self.dec.lin_o.W.data))
else:
lexicon_probability_matrix = None
fb_concat = self.enc(src_batch, src_mask)
mb_size, nb_elems, Hi = fb_concat.data.shape
return self.dec.give_conditionalized_cell(fb_concat, src_mask,
noise_on_prev_word=noise_on_prev_word,
lexicon_probability_matrix=lexicon_probability_matrix,
lex_epsilon=self.lex_epsilon, demux=demux)
示例2: __init__
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def __init__(self, *, iterator, noise_iterator, optimizer_generator,
optimizer_critic, device=-1):
if optimizer_generator.target.name is None:
optimizer_generator.target.name = 'generator'
if optimizer_critic.target.name is None:
optimizer_critic.target.name = 'critic'
iterators = {'main': iterator, 'z': noise_iterator}
optimizers = {'generator': optimizer_generator,
'critic': optimizer_critic}
super().__init__(iterators, optimizers, device=device)
if device >= 0:
cuda.get_device(device).use()
[optimizer.target.to_gpu() for optimizer in optimizers.values()]
self.xp = cuda.cupy if device >= 0 else np
示例3: __call__
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def __call__(self, x):
"""Applies the graph convolutional layer.
Args:
x: (~chainer.Variable): Input graph signal.
Returns:
~chainer.Variable: Output of the graph convolution.
"""
if self.has_uninitialized_params:
with cuda.get_device(self._device_id):
self._initialize_params(x.shape[1])
if self.b is None:
return self.func(x, self.W)
else:
return self.func(x, self.W, self.b)
示例4: forward_gpu
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def forward_gpu(self, inputs):
x, W = inputs[:2]
n_batch, c_in, N = x.shape
b = inputs[2] if len(inputs) == 3 else None
xp = cuda.get_array_module(x)
with cuda.get_device(x.data):
K = self.K
LmI_data, LmI_indices, LmI_indptr = self.LmI_tuple
if x.dtype != LmI_data.dtype:
LmI_data = LmI_data.astype(x.dtype)
C = xp.empty((K, N, c_in, n_batch), dtype=x.dtype)
chebyshev_matvec_gpu(C, x, K, n_batch,
LmI_data, LmI_indices, LmI_indptr)
C = C.transpose((3, 2, 0, 1))
self.C = C
y = xp.tensordot(C, W, ((1, 2), (1, 2)))
if b is not None:
y += b
return xp.rollaxis(y, 2, 1), # y.shape = (n_batch, c_out, N)
示例5: __call__
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def __call__(self, opt):
if cuda.available:
kernel = cuda.elementwise(
'T p, T decay', 'T g', 'g += decay * p', 'weight_decay')
rate = self.rate
for name, param in opt.target.namedparams():
if name == 'b' or name.endswith('/b'):
continue
p, g = param.data, param.grad
with cuda.get_device(p) as dev:
if int(dev) == -1:
g += rate * p
else:
kernel(p, rate, g)
示例6: compute_lexicon_probability_matrix
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def compute_lexicon_probability_matrix(self, src_batch):
if self.lexical_probability_dictionary is not None:
lexicon_probability_matrix = compute_lexicon_matrix(
src_batch, self.lexical_probability_dictionary, self.Vo)
if self.xp != np:
lexicon_probability_matrix = cuda.to_gpu(
lexicon_probability_matrix, cuda.get_device(
self.dec.lin_o.W.data))
else:
lexicon_probability_matrix = None
return lexicon_probability_matrix
示例7: init_state
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def init_state(self, param, state):
xp = cuda.get_array_module(param.data)
with cuda.get_device(param.data):
state['m'] = xp.zeros_like(param.data)
state['v'] = xp.zeros_like(param.data)
示例8: main
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
global_config.train = False
num_gpus = args.num_gpus
if num_gpus > 0:
cuda.get_device(0).use()
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
use_gpus=(num_gpus > 0))
val_iterator, val_dataset_len = get_val_data_iterator(
dataset_name=args.dataset,
batch_size=args.batch_size,
num_workers=args.num_workers)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
val_iterator=val_iterator,
val_dataset_len=val_dataset_len,
num_gpus=num_gpus,
calc_weight_count=True,
extended_log=True)
示例9: main
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
global_config.train = False
num_gpus = args.num_gpus
if num_gpus > 0:
cuda.get_device(0).use()
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
net_extra_kwargs={"aux": False, "fixed_size": False},
use_gpus=(num_gpus > 0))
test_dataset = get_test_dataset(
dataset_name=args.dataset,
dataset_dir=args.data_dir)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
test_dataset=test_dataset,
num_gpus=num_gpus,
num_classes=args.num_classes,
calc_weight_count=True,
extended_log=True,
dataset_metainfo=get_metainfo(args.dataset))
示例10: main
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
global_config.train = False
num_gpus = args.num_gpus
if num_gpus > 0:
cuda.get_device(0).use()
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
use_gpus=(num_gpus > 0))
num_classes = net.classes if hasattr(net, "classes") else 1000
input_image_size = net.in_size[0] if hasattr(net, "in_size") else args.input_size
val_iterator, val_dataset_len = get_val_data_iterator(
data_dir=args.data_dir,
batch_size=args.batch_size,
num_workers=args.num_workers,
num_classes=num_classes)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
val_iterator=val_iterator,
val_dataset_len=val_dataset_len,
num_gpus=num_gpus,
input_image_size=input_image_size,
resize_inv_factor=args.resize_inv_factor,
calc_weight_count=True,
extended_log=True)
示例11: prepare_ch_context
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def prepare_ch_context(num_gpus):
use_gpus = (num_gpus > 0)
if use_gpus:
cuda.get_device(0).use()
return use_gpus
示例12: set_net
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def set_net(self, net):
self.source_net = deepcopy(net)
self.target_net = deepcopy(net)
if self.gpu:
cuda.get_device(0).use()
self.source_net.to_gpu()
self.target_net.to_gpu()
self.optimizer.setup(self.source_net)
self.target_net.train = False
示例13: init_state
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def init_state(self, param):
with cuda.get_device(param.data):
self.state['s'] = []
示例14: __call__
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def __call__(self, opt):
if cuda.available:
kernel = cuda.elementwise(
'T low, T high',
'T p',
'p = (p < low) ? low : (p > high) ? high : p',
'weight_clip')
for param in opt.target.params():
p = param.data
with cuda.get_device(p) as dev:
if int(dev) == -1:
numpy.clip(p, self.low, self.high)
else:
kernel(self.low, self.high, p)
示例15: init_state
# 需要导入模块: from chainer import cuda [as 别名]
# 或者: from chainer.cuda import get_device [as 别名]
def init_state(self, param, state):
xp = cuda.get_array_module(param.data)
with cuda.get_device(param.data):
state['v'] = xp.zeros_like(param.data)