本文整理汇总了Python中chainer.Reporter方法的典型用法代码示例。如果您正苦于以下问题:Python chainer.Reporter方法的具体用法?Python chainer.Reporter怎么用?Python chainer.Reporter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer
的用法示例。
在下文中一共展示了chainer.Reporter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_evaluate
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_evaluate(self):
reporter = chainer.Reporter()
reporter.add_observer('target', self.link)
with reporter:
mean = self.evaluator.evaluate()
# No observation is reported to the current reporter. Instead the
# evaluator collect results in order to calculate their mean.
self.assertEqual(len(reporter.observation), 0)
key = 'ap/iou=0.50:0.95/area=all/max_dets=100'
np.testing.assert_equal(
mean['target/m{}'.format(key)], self.expected_ap)
np.testing.assert_equal(mean['target/{}/cls0'.format(key)], np.nan)
np.testing.assert_equal(mean['target/{}/cls1'.format(key)], np.nan)
np.testing.assert_equal(
mean['target/{}/cls2'.format(key)], self.expected_ap)
示例2: test_evaluate
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_evaluate(self):
reporter = chainer.Reporter()
reporter.add_observer('main', self.link)
with reporter:
eval_ = self.evaluator.evaluate()
# No observation is reported to the current reporter. Instead the
# evaluator collect results in order to calculate their mean.
np.testing.assert_equal(len(reporter.observation), 0)
np.testing.assert_equal(eval_['main/miou'], self.miou)
np.testing.assert_equal(eval_['main/pixel_accuracy'],
self.pixel_accuracy)
np.testing.assert_equal(eval_['main/mean_class_accuracy'],
self.mean_class_accuracy)
np.testing.assert_equal(eval_['main/iou/a'], self.iou_a)
np.testing.assert_equal(eval_['main/iou/b'], self.iou_b)
np.testing.assert_equal(eval_['main/iou/c'], np.nan)
np.testing.assert_equal(eval_['main/class_accuracy/a'],
self.class_accuracy_a)
np.testing.assert_equal(eval_['main/class_accuracy/b'],
self.class_accuracy_b)
np.testing.assert_equal(eval_['main/class_accuracy/c'], np.nan)
示例3: test_evaluate
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_evaluate(self):
reporter = chainer.Reporter()
reporter.add_observer('target', self.link)
with reporter:
mean = self.evaluator.evaluate()
# No observation is reported to the current reporter. Instead the
# evaluator collect results in order to calculate their mean.
self.assertEqual(len(reporter.observation), 0)
key = 'ap/iou=0.50:0.95/area=all/max_dets=100'
np.testing.assert_equal(
mean['target/m{}'.format(key)], self.expected_ap)
np.testing.assert_equal(mean['target/{}/cls0'.format(key)], np.nan)
np.testing.assert_equal(
mean['target/{}/cls1'.format(key)], self.expected_ap)
np.testing.assert_equal(mean['target/{}/cls2'.format(key)], np.nan)
示例4: _test_r2_score_evaluator
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_r2_score_evaluator(inputs):
predictor = DummyPredictor()
x0, x1, _ = inputs
dataset = NumpyTupleDataset(x0, x1)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(iterator, predictor, name='train')
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x1)
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例5: _test_r2_score_evaluator_ignore_nan
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_r2_score_evaluator_ignore_nan(inputs):
predictor = DummyPredictor()
x0, _, x2 = inputs
dataset = NumpyTupleDataset(x0, x2)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(
iterator, predictor, name='train', ignore_nan=True)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x2, ignore_nan=True)
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例6: _test_r2_score_evaluator_ignore_nan_with_nonnan_value
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_r2_score_evaluator_ignore_nan_with_nonnan_value(inputs):
predictor = DummyPredictor()
x0, x1, _ = inputs
dataset = NumpyTupleDataset(x0, x1)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(
iterator, predictor, name='train', ignore_nan=True)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x1, ignore_nan=True)
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例7: _test_r2_score_evaluator_raw_values
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_r2_score_evaluator_raw_values(inputs):
predictor = DummyPredictor()
x0, x1, _ = inputs
dataset = NumpyTupleDataset(x0, x1)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = R2ScoreEvaluator(
iterator, predictor, name='train', multioutput='raw_values')
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected = r2_score(x0, x1, multioutput='raw_values')
pytest.approx(observation['target/r2_score'], expected)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/r2_score'], expected)
示例8: _test_prc_auc_evaluator_default_args
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_prc_auc_evaluator_default_args(data0):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data0)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = PRCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected_prc_auc = 0.7916
pytest.approx(observation['target/prc_auc'], expected_prc_auc)
# --- test __call__ ---
result = evaluator()
pytest.approx(result['train/main/prc_auc'], expected_prc_auc)
示例9: _test_prc_auc_evaluator_raise_error
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_prc_auc_evaluator_raise_error(data, raise_value_error=True):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = PRCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None,
raise_value_error=raise_value_error
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
return observation['target/prc_auc']
示例10: _test_roc_auc_evaluator_default_args
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_roc_auc_evaluator_default_args(data0):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data0)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = ROCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
expected_roc_auc = 0.75
# print('observation ', observation)
assert observation['target/roc_auc'] == expected_roc_auc
# --- test __call__ ---
result = evaluator()
# print('result ', result)
assert result['train/main/roc_auc'] == expected_roc_auc
示例11: _test_roc_auc_evaluator_raise_error
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def _test_roc_auc_evaluator_raise_error(data, raise_value_error=True):
predictor = DummyPredictor()
dataset = NumpyTupleDataset(*data)
iterator = SerialIterator(dataset, 2, repeat=False, shuffle=False)
evaluator = ROCAUCEvaluator(
iterator, predictor, name='train',
pos_labels=1, ignore_labels=None,
raise_value_error=raise_value_error
)
repo = chainer.Reporter()
repo.add_observer('target', predictor)
with repo:
observation = evaluator.evaluate()
return observation['target/roc_auc']
示例12: test_report_key
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_report_key(self, metrics_fun, compute_metrics):
repo = chainer.Reporter()
link = Regressor(predictor=DummyPredictor(),
metrics_fun=metrics_fun)
link.compute_metrics = compute_metrics
repo.add_observer('target', link)
with repo:
observation = {}
with reporter.report_scope(observation):
link(self.x, self.t)
# print('observation ', observation)
actual_keys = set(observation.keys())
if compute_metrics:
if metrics_fun is None:
assert set(['target/loss']) == actual_keys
elif isinstance(metrics_fun, dict):
assert set(['target/loss', 'target/user_key']) == actual_keys
elif callable(metrics_fun):
assert set(['target/loss', 'target/metrics']) == actual_keys
else:
raise TypeError()
else:
assert set(['target/loss']) == actual_keys
示例13: test_empty_reporter
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_empty_reporter(self):
reporter = chainer.Reporter()
self.assertEqual(reporter.observation, {})
示例14: test_enter_exit
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_enter_exit(self):
reporter1 = chainer.Reporter()
reporter2 = chainer.Reporter()
with reporter1:
self.assertIs(chainer.get_current_reporter(), reporter1)
with reporter2:
self.assertIs(chainer.get_current_reporter(), reporter2)
self.assertIs(chainer.get_current_reporter(), reporter1)
示例15: test_enter_exit_threadsafe
# 需要导入模块: import chainer [as 别名]
# 或者: from chainer import Reporter [as 别名]
def test_enter_exit_threadsafe(self):
# This test ensures reporter.__enter__ correctly stores the reporter
# in the thread-local storage.
def thread_func(reporter, record):
with reporter:
# Sleep for a tiny moment to cause an overlap of the context
# managers.
time.sleep(0.01)
record.append(chainer.get_current_reporter())
record1 = [] # The current repoter in each thread is stored here.
record2 = []
reporter1 = chainer.Reporter()
reporter2 = chainer.Reporter()
thread1 = threading.Thread(
target=thread_func,
args=(reporter1, record1))
thread2 = threading.Thread(
target=thread_func,
args=(reporter2, record2))
thread1.daemon = True
thread2.daemon = True
thread1.start()
thread2.start()
thread1.join()
thread2.join()
self.assertIs(record1[0], reporter1)
self.assertIs(record2[0], reporter2)