本文整理汇总了Python中cftime.datetime方法的典型用法代码示例。如果您正苦于以下问题:Python cftime.datetime方法的具体用法?Python cftime.datetime怎么用?Python cftime.datetime使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cftime
的用法示例。
在下文中一共展示了cftime.datetime方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: datetime_or_default
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def datetime_or_default(date, default):
"""Return a datetime-like object or a default.
Parameters
----------
date : `None` or datetime-like object or str
default : The value to return if `date` is `None`
Returns
-------
`default` if `date` is `None`, otherwise returns the result of
`utils.times.ensure_datetime(date)`
"""
if date is None:
return default
else:
return ensure_datetime(date)
示例2: ensure_datetime
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def ensure_datetime(obj):
"""Return the object if it is a datetime-like object
Parameters
----------
obj : Object to be tested.
Returns
-------
The original object if it is a datetime-like object
Raises
------
TypeError if `obj` is not datetime-like
"""
_VALID_TYPES = (str, datetime.datetime, cftime.datetime,
np.datetime64)
if isinstance(obj, _VALID_TYPES):
return obj
raise TypeError("datetime-like object required. "
"Type given: {}".format(type(obj)))
示例3: axisinfo
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def axisinfo(unit, axis):
"""
Returns the :class:`~matplotlib.units.AxisInfo` for *unit*.
*unit* is a tzinfo instance or None.
The *axis* argument is required but not used.
"""
calendar, date_unit, date_type = unit
majloc = NetCDFTimeDateLocator(4, calendar=calendar,
date_unit=date_unit)
majfmt = NetCDFTimeDateFormatter(majloc, calendar=calendar,
time_units=date_unit)
if date_type is CalendarDateTime:
datemin = CalendarDateTime(cftime.datetime(2000, 1, 1),
calendar=calendar)
datemax = CalendarDateTime(cftime.datetime(2010, 1, 1),
calendar=calendar)
else:
datemin = date_type(2000, 1, 1)
datemax = date_type(2010, 1, 1)
return munits.AxisInfo(majloc=majloc, majfmt=majfmt, label='',
default_limits=(datemin, datemax))
示例4: test_cftime_transform_noleap_warn
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def test_cftime_transform_noleap_warn(self):
try:
import cftime
except:
raise SkipTest('Test requires cftime library')
gregorian_dates = [cftime.DatetimeNoLeap(2000, 2, 28),
cftime.DatetimeNoLeap(2000, 3, 1),
cftime.DatetimeNoLeap(2000, 3, 2)]
curve = Curve((gregorian_dates, [1, 2, 3]))
plot = bokeh_renderer.get_plot(curve)
xs = plot.handles['cds'].data['x']
self.assertEqual(xs.astype('int64'),
np.array([951696000000, 951868800000, 951955200000]))
substr = (
"Converting cftime.datetime from a non-standard calendar "
"(noleap) to a standard calendar for plotting. This may "
"lead to subtle errors in formatting dates, for accurate "
"tick formatting switch to the matplotlib backend.")
self.log_handler.assertEndsWith('WARNING', substr)
示例5: cftime_to_timestamp
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def cftime_to_timestamp(date, time_unit='us'):
"""Converts cftime to timestamp since epoch in milliseconds
Non-standard calendars (e.g. Julian or no leap calendars)
are converted to standard Gregorian calendar. This can cause
extra space to be added for dates that don't exist in the original
calendar. In order to handle these dates correctly a custom bokeh
model with support for other calendars would have to be defined.
Args:
date: cftime datetime object (or array)
Returns:
time_unit since 1970-01-01 00:00:00
"""
import cftime
utime = cftime.utime('microseconds since 1970-01-01 00:00:00')
if time_unit == 'us':
tscale = 1
else:
tscale = (np.timedelta64(1, 'us')/np.timedelta64(1, time_unit))
return utime.date2num(date)*tscale
示例6: ensure_cftime_array
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def ensure_cftime_array(time: Sequence):
"""Convert an input 1D array to an array of cftime objects. Python's datetime are converted to cftime.DatetimeGregorian.
Raises ValueError when unable to cast the input.
"""
if isinstance(time, xr.DataArray):
time = time.indexes["time"]
elif isinstance(time, np.ndarray):
time = pd.DatetimeIndex(time)
if isinstance(time[0], cftime.datetime):
return time
if isinstance(time[0], pydt.datetime):
return np.array(
[cftime.DatetimeGregorian(*ele.timetuple()[:6]) for ele in time]
)
raise ValueError("Unable to cast array to cftime dtype")
示例7: cfindex_start_time
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def cfindex_start_time(cfindex, freq):
"""
Get the start of a period for a pseudo-period index. As we are using
datetime indices to stand in for period indices, assumptions regarding the
period are made based on the given freq. IMPORTANT NOTE: this function
cannot be used on greater-than-day freq that start at the beginning of a
month, e.g., 'MS', 'QS', 'AS' -- this mirrors pandas behavior.
Parameters
__________
cfindex : CFTimeIndex
CFTimeIndex as a proxy representation for CFPeriodIndex
freq : str
String specifying the frequency/offset such as 'MS', '2D', 'H', or '3T'
Returns
_______
CFTimeIndex
The starting datetimes of periods inferred from dates and freq
"""
return CFTimeIndex([cftime_start_time(date, freq) for date in cfindex])
示例8: cfindex_end_time
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def cfindex_end_time(cfindex, freq):
"""
Get the start of a period for a pseudo-period index. As we are using
datetime indices to stand in for period indices, assumptions regarding the
period are made based on the given freq. IMPORTANT NOTE: this function
cannot be used on greater-than-day freq that start at the beginning of a
month, e.g., 'MS', 'QS', 'AS' -- this mirrors pandas behavior.
Parameters
__________
cfindex : CFTimeIndex
CFTimeIndex as a proxy representation for CFPeriodIndex
freq : str
String specifying the frequency/offset such as 'MS', '2D', 'H', or '3T'
Returns
_______
CFTimeIndex
The ending datetimes of periods inferred from dates and freq
"""
return CFTimeIndex([cftime_end_time(date, freq) for date in cfindex])
示例9: apply_time_offset
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def apply_time_offset(time, years=0, months=0, days=0, hours=0):
"""Apply a specified offset to the given time array.
This is useful for GFDL model output of instantaneous values. For example,
3 hourly data postprocessed to netCDF files spanning 1 year each will
actually have time values that are offset by 3 hours, such that the first
value is for 1 Jan 03:00 and the last value is 1 Jan 00:00 of the
subsequent year. This causes problems in xarray, e.g. when trying to group
by month. It is resolved by manually subtracting off those three hours,
such that the dates span from 1 Jan 00:00 to 31 Dec 21:00 as desired.
Parameters
----------
time : xarray.DataArray representing a timeseries
years, months, days, hours : int, optional
The number of years, months, days, and hours, respectively, to offset
the time array by. Positive values move the times later.
Returns
-------
pandas.DatetimeIndex
Examples
--------
Case of a length-1 input time array:
>>> times = xr.DataArray(datetime.datetime(1899, 12, 31, 21))
>>> apply_time_offset(times)
Timestamp('1900-01-01 00:00:00')
Case of input time array with length greater than one:
>>> times = xr.DataArray([datetime.datetime(1899, 12, 31, 21),
... datetime.datetime(1899, 1, 31, 21)])
>>> apply_time_offset(times) # doctest: +NORMALIZE_WHITESPACE
DatetimeIndex(['1900-01-01', '1899-02-01'], dtype='datetime64[ns]',
freq=None)
"""
return (pd.to_datetime(time.values) +
pd.DateOffset(years=years, months=months, days=days, hours=hours))
示例10: average_time_bounds
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def average_time_bounds(ds):
"""Return the average of each set of time bounds in the Dataset.
Useful for creating a new time array to replace the Dataset's native time
array, in the case that the latter matches either the start or end bounds.
This can cause errors in grouping (akin to an off-by-one error) if the
timesteps span e.g. one full month each. Note that the Dataset's times
must not have already undergone "CF decoding", wherein they are converted
from floats using the 'units' attribute into datetime objects.
Parameters
----------
ds : xarray.Dataset
A Dataset containing a time bounds array with name matching
internal_names.TIME_BOUNDS_STR. This time bounds array must have two
dimensions, one of which's coordinates is the Dataset's time array, and
the other is length-2.
Returns
-------
xarray.DataArray
The mean of the start and end times of each timestep in the original
Dataset.
Raises
------
ValueError
If the time bounds array doesn't match the shape specified above.
"""
bounds = ds[TIME_BOUNDS_STR]
new_times = bounds.mean(dim=BOUNDS_STR, keep_attrs=True)
new_times = new_times.drop_vars(TIME_STR).rename(TIME_STR)
new_times[TIME_STR] = new_times
return new_times
示例11: get_time_decoded
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def get_time_decoded(self, midpoint=True):
"""Return time decoded.
"""
# to compute a time midpoint, we need a time_bound variable
if midpoint and self.time_bound is None:
raise ValueError('cannot compute time midpoint w/o time bounds')
if midpoint:
time_data = self.time_bound.mean(self.tb_dim)
else:
# if time has already been decoded and there's no year_offset,
# just return the time as is
if self.isdecoded(self.time):
if self.year_offset is None:
return self.time
# if we need to un-decode time to apply the year_offset,
time_data = self.get_time_undecoded()
# time has not been decoded
else:
time_data = self.time
if self.year_offset is not None:
time_data += cftime.date2num(
datetime(int(self.year_offset), 1, 1),
units=self.time_attrs['units'],
calendar=self.time_attrs['calendar'],
)
time_out = self.time.copy()
time_out.data = xr.CFTimeIndex(
cftime.num2date(
time_data,
units=self.time_attrs['units'],
calendar=self.time_attrs['calendar'],
only_use_cftime_datetimes=True,
)
)
return time_out
示例12: time_year_to_midyeardate
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def time_year_to_midyeardate(self):
"""Set the time coordinate to the mid-point of the year.
"""
ds = self._ds_time_computed.copy(True)
ds[self.time_coord_name].data = np.array(
[cftime.datetime(entry.year, 7, 2) for entry in ds[self.time_coord_name].data]
)
return ds
示例13: climatology
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def climatology(dset, freq, time_coord_name=None):
"""Compute climatologies for a specified time frequency
Parameters
----------
dset : xarray.Dataset
The data on which to operate
freq : str
Frequency alias. Accepted alias:
- ``mon``: for monthly climatologies
time_coord_name : str
Name for time coordinate to use
Returns
-------
computed_dset : xarray.Dataset
The computed climatology data
"""
accepted_freq = {'mon'}
if freq not in accepted_freq:
raise ValueError(f'{freq} is not among supported frequency aliases={accepted_freq}')
else:
ds = dset.esmlab.set_time(time_coord_name=time_coord_name).compute_mon_climatology()
new_history = f'\n{datetime.now()} esmlab.climatology(<DATASET>, freq="{freq}")'
ds.attrs['history'] = new_history
return ds
示例14: anomaly
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def anomaly(dset, clim_freq, slice_mon_clim_time=None, time_coord_name=None):
"""Compute anomalies for a specified time frequency
Parameters
----------
dset : xarray.Dataset
The data on which to operate
clim_freq : str
Climatology frequency alias. Accepted alias:
- ``mon``: for monthly climatologies
slice_mon_clim_time : slice, optional
a slice object passed to
`dset.isel(time=slice_mon_clim_time)` for subseting
the time-period overwhich the climatology is computed
time_coord_name : str
Name for time coordinate to use
Returns
-------
computed_dset : xarray.Dataset
The computed anomaly data
"""
accepted_freq = {'mon'}
if clim_freq not in accepted_freq:
raise ValueError(f'{clim_freq} is not among supported frequency aliases={accepted_freq}')
else:
ds = dset.esmlab.set_time(time_coord_name=time_coord_name).compute_mon_anomaly(
slice_mon_clim_time=slice_mon_clim_time
)
new_history = f'\n{datetime.now()} esmlab.anomaly(<DATASET>, clim_freq="{clim_freq}", slice_mon_clim_time="{slice_mon_clim_time}")'
ds.attrs['history'] = new_history
return ds
示例15: __init__
# 需要导入模块: import cftime [as 别名]
# 或者: from cftime import datetime [as 别名]
def __init__(self, datetime, calendar):
self.datetime = datetime
self.calendar = calendar