本文整理汇总了Python中catboost.CatBoostClassifier方法的典型用法代码示例。如果您正苦于以下问题:Python catboost.CatBoostClassifier方法的具体用法?Python catboost.CatBoostClassifier怎么用?Python catboost.CatBoostClassifier使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类catboost
的用法示例。
在下文中一共展示了catboost.CatBoostClassifier方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Train
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def Train(data, modelcount, censhu, yanzhgdata, predata, cat=data.catind):
model = cb.CatBoostClassifier(iterations=modelcount, depth=censhu, learning_rate=0.5, loss_function='Logloss',
logging_level='Verbose')
model.fit(data[:, :-1], data[:, -1], cat_features=cat, eval_set=(yanzhgdata[:, :-1], yanzhgdata[:, -1]))
# 给出训练数据的分数
train_mse = model.score(data[:, :-1], data[:, -1])
# 给出验证数据的分数
add_mse = model.score(yanzhgdata[:, :-1], yanzhgdata[:, -1])
print(train_mse, add_mse)
# 输出预测数据的预测值
preout = model.predict(predata[:, :-1])
return train_mse, add_mse, preout
# 最终确定组合的函数
示例2: test_cv_cat_df
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def test_cv_cat_df():
X, y = make_classification_df(n_samples=1024, n_num_features=20, n_cat_features=1, class_sep=0.98, random_state=0)
X, _ = autoprep_gbdt('cat', X, None)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
models = [CatBoostClassifier(n_estimators=300) for _ in range(5)]
pred_oof, pred_test, scores, importance = cross_validate(models, X_train, y_train, X_test, cv=5,
eval_func=roc_auc_score,
fit_params={'cat_features': ['cat_0']})
print(scores)
assert len(scores) == 5 + 1
assert scores[-1] >= 0.85 # overall roc_auc
assert roc_auc_score(y_train, pred_oof) == scores[-1]
assert roc_auc_score(y_test, pred_test) >= 0.85 # test roc_auc
assert roc_auc_score(y_test, models[0].predict_proba(X_test)[:, 1]) >= 0.85 # make sure models are trained
assert len(importance) == 5
assert list(importance[0].columns) == ['feature', 'importance']
assert len(importance[0]) == 20 + 1
assert models[0].tree_count_ < 300 # making sure early stopping worked
示例3: __init__
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def __init__(self):
self._models = dict()
try:
import sklearn.ensemble
self._models['RandomForestClassifier'] = sklearn.ensemble.RandomForestClassifier
except ImportError:
pass
try:
import xgboost
self._models['XGBClassifier'] = xgboost.XGBClassifier
except ImportError:
pass
try:
import lightgbm
self._models['LGBMClassifier'] = lightgbm.LGBMClassifier
except ImportError:
pass
try:
import catboost
self._models['CatBoostClassifier'] = catboost.CatBoostClassifier
except ImportError:
pass
示例4: fit
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
lb = LabelEncoder()
lb.fit(self.labels)
y = lb.transform(y)
orig_cols = list(X.names)
XX = X.to_pandas()
params = {
'train_dir': user_dir(),
'allow_writing_files': False,
'thread_count': 10,
# 'loss_function': 'Logloss'
}
from catboost import CatBoostClassifier
model = CatBoostClassifier(**params)
model.fit(XX, y=y, sample_weight=sample_weight, verbose=False,
cat_features=list(X[:, [str, int]].names)) # Amazon specific, also no early stopping
# must always set best_iterations
self.set_model_properties(model=model,
features=orig_cols,
importances=model.feature_importances_,
iterations=0)
示例5: test_catboost_bin_classifier
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def test_catboost_bin_classifier(self):
import onnxruntime
from distutils.version import StrictVersion
if StrictVersion(onnxruntime.__version__) >= StrictVersion('1.3.0'):
X, y = make_classification(n_samples=100, n_features=4, random_state=0)
catboost_model = catboost.CatBoostClassifier(task_type='CPU', loss_function='CrossEntropy',
n_estimators=10, verbose=0)
catboost_model.fit(X.astype(numpy.float32), y)
catboost_onnx = convert_catboost(catboost_model, name='CatBoostBinClassification',
doc_string='test binary classification')
self.assertTrue(catboost_onnx is not None)
dump_data_and_model(X.astype(numpy.float32), catboost_model, catboost_onnx, basename="CatBoostBinClass")
else:
warnings.warn('Converted CatBoost models for binary classification work with onnxruntime version 1.3.0 or '
'a newer one')
示例6: __init__
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def __init__(self, **kwargs):
super().__init__()
self.estimator = ctb.CatBoostClassifier(**kwargs)
示例7: CatBoost_First
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def CatBoost_First(self, data, catsign, depth=5, iterations=200):
model = cb.CatBoostClassifier(iterations=iterations, depth=depth, learning_rate=0.5,
loss_function='Logloss', logging_level='Verbose')
model.fit(data['train'][:, :-1], data['train'][:, -1], cat_features=catsign)
# 注意存储验证数据集结果和预测数据集结果的不同
# 训练数据集的预测结果
xul = model.predict(data['train'][:, :-1])
# 验证的预测结果
yanre = model.predict(data['test'][:, :-1])
# 预测的预测结果
prer = model.predict(data['predict'][:, :-1])
# 每计算一折后,要计算训练、验证、预测数据的误差
xx = self.F1(xul, data['train'][:, -1])
yy = self.F1(yanre, data['test'][:, -1])
pp = self.F1(prer, data['predict'][:, -1])
# 开始结合
self.yanzhneg_pr.append(yanre)
self.yanzhneg_real = data['test'][:, -1]
self.predi.append(prer)
self.preal = data['predict'][:, -1]
# 存储误差
self.error_dict['CatBoost'] = [xx, yy, pp]
return print('1层中的CatBoost运行完毕')
示例8: __init__
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def __init__(self, target_labels, *args, **kwargs):
self.target_labels = target_labels
self.n_classes = len(target_labels)
self.models = [CatBoostClassifier(*args, **kwargs) for _ in range(self.n_classes)]
示例9: dump
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def dump(self, model) -> ArtifactCollection:
"""
Dumps `catboost.CatBoostClassifier` or `catboost.CatBoostRegressor` instance to :class:`.LocalFileBlob` and
creates :class:`.ArtifactCollection` from it
:return: context manager with :class:`~ebonite.core.objects.ArtifactCollection`
"""
model_file = tempfile.mktemp()
try:
model.save_model(model_file)
yield Blobs({self._get_model_file_name(model): LocalFileBlob(model_file)})
finally:
os.remove(model_file)
示例10: _get_model_file_name
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def _get_model_file_name(self, model):
if isinstance(model, CatBoostClassifier):
return self.classifier_file_name
return self.regressor_file_name
示例11: load
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def load(self, path):
"""
Loads `catboost.CatBoostClassifier` or `catboost.CatBoostRegressor` instance from path
:param path: path to load from
"""
if os.path.exists(os.path.join(path, self.classifier_file_name)):
model_type = CatBoostClassifier
else:
model_type = CatBoostRegressor
model = model_type()
model.load_model(os.path.join(path, self._get_model_file_name(model)))
return model
示例12: _exposed_methods_mapping
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def _exposed_methods_mapping(self):
ret = {
'predict': 'predict'
}
if isinstance(self.model, CatBoostClassifier):
ret['predict_proba'] = 'predict_proba'
return ret
示例13: catboost_classifier
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def catboost_classifier(pandas_data, catboost_params):
return CatBoostClassifier(**catboost_params).fit(pandas_data, [1, 0])
示例14: test_serialization_final_fallback
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def test_serialization_final_fallback(ray_start_regular):
pytest.importorskip("catboost")
# This test will only run when "catboost" is installed.
from catboost import CatBoostClassifier
model = CatBoostClassifier(
iterations=2,
depth=2,
learning_rate=1,
loss_function="Logloss",
logging_level="Verbose")
reconstructed_model = ray.get(ray.put(model))
assert set(model.get_params().items()) == set(
reconstructed_model.get_params().items())
示例15: __init__
# 需要导入模块: import catboost [as 别名]
# 或者: from catboost import CatBoostClassifier [as 别名]
def __init__(self, **kwargs):
self.estimator = ctb.CatBoostClassifier(**kwargs)