本文整理汇总了Python中cartopy.crs.Robinson方法的典型用法代码示例。如果您正苦于以下问题:Python crs.Robinson方法的具体用法?Python crs.Robinson怎么用?Python crs.Robinson使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cartopy.crs
的用法示例。
在下文中一共展示了crs.Robinson方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Robinson [as 别名]
def main():
ax = plt.axes(projection=ccrs.Robinson())
# make the map global rather than have it zoom in to
# the extents of any plotted data
ax.set_global()
ax.stock_img()
ax.coastlines()
# san diego
sdlat, sdlon = 32.7157, -117.1611
# brisbane
brislat, brislon = -27.4698, 153.0251
# NOTE: longitude before latitude!!
plt.plot([sdlon, brislon], [sdlat, brislat], color='blue', linewidth=2, transform=ccrs.Geodetic())
plt.show()
示例2: plot_extend
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Robinson [as 别名]
def plot_extend(resource, file_extension='png'):
"""
plots the extend (domain) of the values stored in a netCDF file:
:parm resource: path to netCDF file
:param file_extension: file format of the graphic. if file_extension=None a matplotlib figure will be returned
:return graphic: graphic in specified format
"""
lats, lons = get_coordinates(resource, unrotate=True)
# box_top = 45
# x, y = [-20, -20, 45, 45, -44], [-45, box_top, box_top, -45, -45]
xy = np.array([[np.min(lons), np.min(lats)],
[np.max(lons), np.min(lats)],
[np.max(lons), np.max(lats)],
[np.min(lons), np.max(lats)]])
fig = plt.figure(figsize=(20, 10), dpi=600, facecolor='w', edgecolor='k')
projection = ccrs.Robinson()
# ccrs.Orthographic(central_longitude=np.mean(xy[:, 0]),
# central_latitude=np.mean(xy[:, 1]),
# globe=None) # Robinson()
ax = plt.axes(projection=projection)
ax.stock_img()
ax.coastlines()
ax.add_patch(mpatches.Polygon(xy, closed=True, transform=ccrs.PlateCarree(), color='coral', alpha=0.6))
# ccrs.Geodetic()
ax.gridlines()
plt.show()
if file_extension is None:
map_graphic = fig
else:
map_graphic = fig2plot(fig=fig, file_extension=file_extension)
plt.close()
return map_graphic
示例3: plotmap
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Robinson [as 别名]
def plotmap(ll, dd, maxdist=1, maxlinewidth=3):
"""
Plot the map of the dna distances and lat longs
:param ll: The lon-lats
:param dd: The distances to use
:param maxdist: The maximum distance that we will scale to be maxlinewidth
:return:
"""
ax = plt.axes(projection=ccrs.Robinson())
# make the map global rather than have it zoom in to
# the extents of any plotted data
ax.set_global()
ax.stock_img()
ax.coastlines()
## color the lines based on the maximum distance value
jet = cm = plt.get_cmap('jet')
cNorm = colors.Normalize(vmin=0, vmax=maxdist)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
# Using contourf to provide my colorbar info, then clearing the figure
Z = [[0, 0], [0, 0]]
levels = range(0, int(100 * maxdist) + 10, 10)
CS3 = plt.contourf(Z, levels, cmap=jet)
# plt.clf()
# NOTE: longitude before latitude!!
# plt.plot([sdlon, brislon], [sdlat, brislat], color='blue', linewidth=2, transform=ccrs.Geodetic())
samples = ll.keys()
# plot the circles for each sample site
for lonlat in ll.values():
plt.plot(lonlat[0], lonlat[1], '*', markersize=18, transform=ccrs.PlateCarree())
for idx1 in samples:
for idx2 in samples:
if idx1 == idx2:
continue
# this should only happen when we do best DNA distances
if idx2 not in dd[idx1]:
continue
linewidth = dd[idx1][idx2]
linewidth = linewidth/maxdist * maxlinewidth
colorVal = scalarMap.to_rgba(dd[idx1][idx2])
plt.plot([ll[idx1][0], ll[idx2][0]], [ll[idx1][1], ll[idx2][1]], color=colorVal, linewidth=linewidth, alpha=0.25, transform=ccrs.Geodetic())
# plt.colorbar(CS3)
plt.show()