本文整理汇总了Python中cartopy.crs.Geodetic方法的典型用法代码示例。如果您正苦于以下问题:Python crs.Geodetic方法的具体用法?Python crs.Geodetic怎么用?Python crs.Geodetic使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cartopy.crs
的用法示例。
在下文中一共展示了crs.Geodetic方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Geodetic [as 别名]
def main():
ax = plt.axes(projection=ccrs.Robinson())
# make the map global rather than have it zoom in to
# the extents of any plotted data
ax.set_global()
ax.stock_img()
ax.coastlines()
# san diego
sdlat, sdlon = 32.7157, -117.1611
# brisbane
brislat, brislon = -27.4698, 153.0251
# NOTE: longitude before latitude!!
plt.plot([sdlon, brislon], [sdlat, brislat], color='blue', linewidth=2, transform=ccrs.Geodetic())
plt.show()
示例2: setup
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Geodetic [as 别名]
def setup(self):
# Image length.
self.imlen = 256
# Image.
self.img = Image.open(
"LunarLROLrocKaguya_1180mperpix_downsamp.png").convert("L")
self.imgsize = self.img.size
# Crater catalogue.
self.craters = igen.ReadLROCHeadCombinedCraterCSV(
filelroc="../catalogues/LROCCraters.csv",
filehead="../catalogues/HeadCraters.csv",
sortlat=True)
# Long/lat limits
self.cdim = [-180., 180., -60., 60.]
# Coordinate systems.
self.iglobe = ccrs.Globe(semimajor_axis=1737400,
semiminor_axis=1737400,
ellipse=None)
self.geoproj = ccrs.Geodetic(globe=self.iglobe)
self.iproj = ccrs.PlateCarree(globe=self.iglobe)
示例3: plot_extend
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Geodetic [as 别名]
def plot_extend(resource, file_extension='png'):
"""
plots the extend (domain) of the values stored in a netCDF file:
:parm resource: path to netCDF file
:param file_extension: file format of the graphic. if file_extension=None a matplotlib figure will be returned
:return graphic: graphic in specified format
"""
lats, lons = get_coordinates(resource, unrotate=True)
# box_top = 45
# x, y = [-20, -20, 45, 45, -44], [-45, box_top, box_top, -45, -45]
xy = np.array([[np.min(lons), np.min(lats)],
[np.max(lons), np.min(lats)],
[np.max(lons), np.max(lats)],
[np.min(lons), np.max(lats)]])
fig = plt.figure(figsize=(20, 10), dpi=600, facecolor='w', edgecolor='k')
projection = ccrs.Robinson()
# ccrs.Orthographic(central_longitude=np.mean(xy[:, 0]),
# central_latitude=np.mean(xy[:, 1]),
# globe=None) # Robinson()
ax = plt.axes(projection=projection)
ax.stock_img()
ax.coastlines()
ax.add_patch(mpatches.Polygon(xy, closed=True, transform=ccrs.PlateCarree(), color='coral', alpha=0.6))
# ccrs.Geodetic()
ax.gridlines()
plt.show()
if file_extension is None:
map_graphic = fig
else:
map_graphic = fig2plot(fig=fig, file_extension=file_extension)
plt.close()
return map_graphic
示例4: main
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Geodetic [as 别名]
def main():
# This is just useful for formatting returned dict
# pp = pprint.PrettyPrinter(indent=2)
# Create instance of Meso object, pass in YOUR token
m = Meso(token='YOUR TOKEN')
# Use to lookup stations, could specify counties or whatever here
# findstationids = m.station_list(state='CO')
# print(findstationids)
# Grab most recent temp (F) ob in last 90 min at each of the below stations
stations = ['kgxy, kccu, kcos, kden, kgjt, kbdu, kpub, klhx, kspd, kdro, ksbs, keeo, kguc, klic, '
'kstk, kals, ktad']
latest = m.latest(stid=stations, within='90', vars='air_temp', units='temp|F')
# create a list to store everything, iterate over the number of objs returned in latest and append
# lat, long, temp, and stid for use later
data = []
[data.append((float(ob['LATITUDE']), float(ob['LONGITUDE']), float(ob['OBSERVATIONS']['air_temp_value_1']['value']),
ob['STID'])) for ob in latest['STATION']]
print(data)
# Create a MapQuest open aerial instance.
map_quest_aerial = cimgt.MapQuestOpenAerial()
# Create a GeoAxes in the tile's projection.
ax = plt.axes(projection=map_quest_aerial.crs)
# Limit the extent of the map to Colorado's borders
ax.set_extent([-102.03, -109.03, 37, 41])
# Add the MapQuest data at zoom level 8.
ax.add_image(map_quest_aerial, 8)
# Plot lat/long pts with below params
for lat, lon, temp, stid in data:
plt.plot(lon, lat, marker='o', color='y', markersize=1,
alpha=0.7, transform=ccrs.Geodetic())
# Transforms for the text func we're about to call
geodetic_transform = ccrs.Geodetic()._as_mpl_transform(ax)
text_transform = offset_copy(geodetic_transform, units='dots', x=0, y=0)
# Plot temp and station id for each of the markers
for lat, lon, temp, stid in data:
plt.text(lon, lat, stid + '\n' + str(round(temp, 1)) + u' \N{DEGREE SIGN}' + 'F',
verticalalignment='center', horizontalalignment='center',
transform=text_transform, fontsize=9,
bbox=dict(facecolor='wheat', alpha=0.5, boxstyle='round'))
plt.title('Current Weather Around Colorado')
plt.show()
示例5: plotmap
# 需要导入模块: from cartopy import crs [as 别名]
# 或者: from cartopy.crs import Geodetic [as 别名]
def plotmap(ll, dd, maxdist=1, maxlinewidth=3):
"""
Plot the map of the dna distances and lat longs
:param ll: The lon-lats
:param dd: The distances to use
:param maxdist: The maximum distance that we will scale to be maxlinewidth
:return:
"""
ax = plt.axes(projection=ccrs.Robinson())
# make the map global rather than have it zoom in to
# the extents of any plotted data
ax.set_global()
ax.stock_img()
ax.coastlines()
## color the lines based on the maximum distance value
jet = cm = plt.get_cmap('jet')
cNorm = colors.Normalize(vmin=0, vmax=maxdist)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
# Using contourf to provide my colorbar info, then clearing the figure
Z = [[0, 0], [0, 0]]
levels = range(0, int(100 * maxdist) + 10, 10)
CS3 = plt.contourf(Z, levels, cmap=jet)
# plt.clf()
# NOTE: longitude before latitude!!
# plt.plot([sdlon, brislon], [sdlat, brislat], color='blue', linewidth=2, transform=ccrs.Geodetic())
samples = ll.keys()
# plot the circles for each sample site
for lonlat in ll.values():
plt.plot(lonlat[0], lonlat[1], '*', markersize=18, transform=ccrs.PlateCarree())
for idx1 in samples:
for idx2 in samples:
if idx1 == idx2:
continue
# this should only happen when we do best DNA distances
if idx2 not in dd[idx1]:
continue
linewidth = dd[idx1][idx2]
linewidth = linewidth/maxdist * maxlinewidth
colorVal = scalarMap.to_rgba(dd[idx1][idx2])
plt.plot([ll[idx1][0], ll[idx2][0]], [ll[idx1][1], ll[idx2][1]], color=colorVal, linewidth=linewidth, alpha=0.25, transform=ccrs.Geodetic())
# plt.colorbar(CS3)
plt.show()