本文整理汇总了Python中caffe2.python.workspace.RunNet方法的典型用法代码示例。如果您正苦于以下问题:Python workspace.RunNet方法的具体用法?Python workspace.RunNet怎么用?Python workspace.RunNet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类caffe2.python.workspace
的用法示例。
在下文中一共展示了workspace.RunNet方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _run_speed_test
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def _run_speed_test(self, iters=5, N=1024):
"""This function provides an example of how to benchmark custom
operators using the Caffe2 'prof_dag' network execution type. Please
note that for 'prof_dag' to work, Caffe2 must be compiled with profiling
support using the `-DUSE_PROF=ON` option passed to `cmake` when building
Caffe2.
"""
net = core.Net('test')
net.Proto().type = 'prof_dag'
net.Proto().num_workers = 2
Y = net.BatchPermutation(['X', 'I'], 'Y')
Y_flat = net.FlattenToVec([Y], 'Y_flat')
loss = net.AveragedLoss([Y_flat], 'loss')
net.AddGradientOperators([loss])
workspace.CreateNet(net)
X = np.random.randn(N, 256, 14, 14)
for _i in range(iters):
I = np.random.permutation(N)
workspace.FeedBlob('X', X.astype(np.float32))
workspace.FeedBlob('I', I.astype(np.int32))
workspace.RunNet(net.Proto().name)
np.testing.assert_allclose(
workspace.FetchBlob('Y'), X[I], rtol=1e-5, atol=1e-08
)
示例2: im_conv_body_only
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def im_conv_body_only(model, im, target_scale, target_max_size):
"""Runs `model.conv_body_net` on the given image `im`."""
im_blob, im_scale, _im_info = blob_utils.get_image_blob(
im, target_scale, target_max_size
)
workspace.FeedBlob(core.ScopedName('data'), im_blob)
workspace.RunNet(model.conv_body_net.Proto().name)
return im_scale
示例3: im_detect_mask
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def im_detect_mask(model, im_scale, boxes):
"""Infer instance segmentation masks. This function must be called after
im_detect_bbox as it assumes that the Caffe2 workspace is already populated
with the necessary blobs.
Arguments:
model (DetectionModelHelper): the detection model to use
im_scales (list): image blob scales as returned by im_detect_bbox
boxes (ndarray): R x 4 array of bounding box detections (e.g., as
returned by im_detect_bbox)
Returns:
pred_masks (ndarray): R x K x M x M array of class specific soft masks
output by the network (must be processed by segm_results to convert
into hard masks in the original image coordinate space)
"""
M = cfg.MRCNN.RESOLUTION
if boxes.shape[0] == 0:
pred_masks = np.zeros((0, M, M), np.float32)
return pred_masks
inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)}
# Add multi-level rois for FPN
if cfg.FPN.MULTILEVEL_ROIS:
_add_multilevel_rois_for_test(inputs, 'mask_rois')
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v)
workspace.RunNet(model.mask_net.Proto().name)
# Fetch masks
pred_masks = workspace.FetchBlob(
core.ScopedName('mask_fcn_probs')
).squeeze()
if cfg.MRCNN.CLS_SPECIFIC_MASK:
pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M])
else:
pred_masks = pred_masks.reshape([-1, 1, M, M])
return pred_masks
示例4: im_detect_keypoints
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def im_detect_keypoints(model, im_scale, boxes):
"""Infer instance keypoint poses. This function must be called after
im_detect_bbox as it assumes that the Caffe2 workspace is already populated
with the necessary blobs.
Arguments:
model (DetectionModelHelper): the detection model to use
im_scales (list): image blob scales as returned by im_detect_bbox
boxes (ndarray): R x 4 array of bounding box detections (e.g., as
returned by im_detect_bbox)
Returns:
pred_heatmaps (ndarray): R x J x M x M array of keypoint location
logits (softmax inputs) for each of the J keypoint types output
by the network (must be processed by keypoint_results to convert
into point predictions in the original image coordinate space)
"""
M = cfg.KRCNN.HEATMAP_SIZE
if boxes.shape[0] == 0:
pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32)
return pred_heatmaps
inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)}
# Add multi-level rois for FPN
if cfg.FPN.MULTILEVEL_ROIS:
_add_multilevel_rois_for_test(inputs, 'keypoint_rois')
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v)
workspace.RunNet(model.keypoint_net.Proto().name)
pred_heatmaps = workspace.FetchBlob(core.ScopedName('kps_score')).squeeze()
# In case of 1
if pred_heatmaps.ndim == 3:
pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0)
return pred_heatmaps
示例5: train
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def train(INIT_NET, PREDICT_NET, epochs, batch_size, device_opts) :
data, gt_segmentation = get_data(batch_size)
workspace.FeedBlob("data", data, device_option=device_opts)
workspace.FeedBlob("gt_segmentation", gt_segmentation, device_option=device_opts)
train_model= model_helper.ModelHelper(name="train_net", arg_scope = {"order": "NHWC"})
output_segmentation = create_unet_model(train_model, device_opts=device_opts, is_test=0)
add_training_operators(output_segmentation, train_model, device_opts=device_opts)
with core.DeviceScope(device_opts):
brew.add_weight_decay(train_model, 0.001)
workspace.RunNetOnce(train_model.param_init_net)
workspace.CreateNet(train_model.net)
print '\ntraining for', epochs, 'epochs'
for j in range(0, epochs):
data, gt_segmentation = get_data(batch_size, 4)
workspace.FeedBlob("data", data, device_option=device_opts)
workspace.FeedBlob("gt_segmentation", gt_segmentation, device_option=device_opts)
workspace.RunNet(train_model.net, 1) # run for 10 times
print str(j) + ': ' + str(workspace.FetchBlob("avg_loss"))
print 'training done'
test_model= model_helper.ModelHelper(name="test_net", arg_scope = {"order": "NHWC"}, init_params=False)
create_unet_model(test_model, device_opts=device_opts, is_test=1)
workspace.RunNetOnce(test_model.param_init_net)
workspace.CreateNet(test_model.net, overwrite=True)
print '\nsaving test model'
save_net(INIT_NET, PREDICT_NET, test_model)
示例6: run
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def run(self, X, S_lengths, S_indices, T, enable_prof=False):
# feed input data to blobs
# dense features
self.FeedBlobWrapper(self.tdin, X, split=True)
# sparse features
for i in range(len(self.emb_l)):
# select device
if self.ndevices > 1:
d = i % self.ndevices
else:
d = -1
# create tags
on_device = "" if self.ndevices <= 1 else "gpu_" + str(d) + "/"
len_s = on_device + self.temb + ":::" + "sls" + str(i) + "_l"
ind_s = on_device + self.temb + ":::" + "sls" + str(i) + "_i"
self.FeedBlobWrapper(len_s, np.array(S_lengths[i]), False, device_id=d)
self.FeedBlobWrapper(ind_s, np.array(S_indices[i]), False, device_id=d)
# feed target data to blobs if needed
if T is not None:
self.FeedBlobWrapper(self.ttar, T, split=True)
# execute compute graph
if enable_prof:
workspace.C.benchmark_net(self.model.net.Name(), 0, 1, True)
else:
workspace.RunNet(self.model.net)
# debug prints
# print("intermediate")
# print(self.FetchBlobWrapper(self.bot_l[-1]))
# for tag_emb in self.emb_l:
# print(self.FetchBlobWrapper(tag_emb))
# print(self.FetchBlobWrapper(self.tint))
示例7: compute_and_update_bn_stats
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def compute_and_update_bn_stats(self, curr_iter=None):
"""
We update BN before: (i) testing and (ii) checkpointing.
They may have different periods.
To ensure test results are reproducible (not changed by new BN stats),
We only compute new stats if curr_iter changes.
"""
if curr_iter is None or curr_iter != self._last_update_iter:
logger.info('Computing and updating BN stats at iter: {}'.format(
curr_iter + 1))
self._last_update_iter = curr_iter
self._clean_and_reset_buffer()
timer = Timer()
for i in range(cfg.TRAIN.ITER_COMPUTE_PRECISE_BN):
timer.tic()
workspace.RunNet(self._model.net.Proto().name)
self._collect_bn_stats()
timer.toc()
if (i + 1) % cfg.LOG_PERIOD == 0:
logger.info('Computing BN [{}/{}]: {:.3}s'.format(
i + 1, cfg.TRAIN.ITER_COMPUTE_PRECISE_BN, timer.diff))
self._finalize_bn_stats()
self._update_bn_stats_gpu()
else:
logger.info('BN of iter {} computed. Update to GPU only.'.format(
curr_iter + 1))
self._update_bn_stats_gpu()
示例8: run
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def run(self, X, S_lengths, S_indices, T, test_net=False, enable_prof=False):
# feed input data to blobs
# dense features
self.FeedBlobWrapper(self.tdin, X, split=True)
# sparse features
for i in range(len(self.emb_l)):
# select device
if self.ndevices > 1:
d = i % self.ndevices
else:
d = -1
# create tags
on_device = "" if self.ndevices <= 1 else "gpu_" + str(d) + "/"
len_s = on_device + self.temb + ":::" + "sls" + str(i) + "_l"
ind_s = on_device + self.temb + ":::" + "sls" + str(i) + "_i"
self.FeedBlobWrapper(len_s, np.array(S_lengths[i]), False, device_id=d)
self.FeedBlobWrapper(ind_s, np.array(S_indices[i]), False, device_id=d)
# feed target data to blobs if needed
if T is not None:
self.FeedBlobWrapper(self.ttar, T, split=True)
# execute compute graph
if test_net:
workspace.RunNet(self.test_net)
else:
if enable_prof:
workspace.C.benchmark_net(self.model.net.Name(), 0, 1, True)
else:
workspace.RunNet(self.model.net)
# debug prints
# print("intermediate")
# print(self.FetchBlobWrapper(self.bot_l[-1]))
# for tag_emb in self.emb_l:
# print(self.FetchBlobWrapper(tag_emb))
# print(self.FetchBlobWrapper(self.tint))
示例9: im_conv_body_only
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import RunNet [as 别名]
def im_conv_body_only(model, im):
"""Runs `model.conv_body_net` on the given image `im`."""
im_blob, im_scale_factors = _get_image_blob(im)
workspace.FeedBlob(core.ScopedName('data'), im_blob)
workspace.RunNet(model.conv_body_net.Proto().name)
return im_scale_factors