本文整理汇总了Python中caffe2.python.workspace.FetchBlobs方法的典型用法代码示例。如果您正苦于以下问题:Python workspace.FetchBlobs方法的具体用法?Python workspace.FetchBlobs怎么用?Python workspace.FetchBlobs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类caffe2.python.workspace
的用法示例。
在下文中一共展示了workspace.FetchBlobs方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_nps
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def make_nps(xs):
assert isinstance(xs, list), 'ERROR: should pass list of names of the blobs'
return workspace.FetchBlobs(xs)
示例2: im_proposals
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def im_proposals(model, im):
"""Generate RPN proposals on a single image."""
inputs = {}
inputs['data'], inputs['im_info'] = _get_image_blob(im)
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v.astype(np.float32, copy=False))
workspace.RunNet(model.net.Proto().name)
scale = inputs['im_info'][0, 2]
if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_RPN:
k_max = cfg.FPN.RPN_MAX_LEVEL
k_min = cfg.FPN.RPN_MIN_LEVEL
rois_names = [
core.ScopedName('rpn_rois_fpn' + str(l))
for l in range(k_min, k_max + 1)]
score_names = [
core.ScopedName('rpn_roi_probs_fpn' + str(l))
for l in range(k_min, k_max + 1)]
blobs = workspace.FetchBlobs(rois_names + score_names)
# Combine predictions across all levels and retain the top scoring
boxes = np.concatenate(blobs[:len(rois_names)])
scores = np.concatenate(blobs[len(rois_names):]).squeeze()
# TODO(rbg): NMS again?
inds = np.argsort(-scores)[:cfg.TEST.RPN_POST_NMS_TOP_N]
scores = scores[inds]
boxes = boxes[inds, :]
else:
boxes, scores = workspace.FetchBlobs(
[core.ScopedName('rpn_rois'), core.ScopedName('rpn_roi_probs')])
scores = scores.squeeze()
# Column 0 is the batch index in the (batch ind, x1, y1, x2, y2) encoding,
# so we remove it since we just want to return boxes
boxes = boxes[:, 1:] / scale
return boxes, scores
示例3: main
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def main(opts):
logger = logging.getLogger(__name__)
roidb = combined_roidb_for_training(
cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
logger.info('{:d} roidb entries'.format(len(roidb)))
roi_data_loader = RoIDataLoader(
roidb,
num_loaders=cfg.DATA_LOADER.NUM_THREADS,
minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
)
blob_names = roi_data_loader.get_output_names()
net = core.Net('dequeue_net')
net.type = 'dag'
all_blobs = []
for gpu_id in range(cfg.NUM_GPUS):
with core.NameScope('gpu_{}'.format(gpu_id)):
with core.DeviceScope(muji.OnGPU(gpu_id)):
for blob_name in blob_names:
blob = core.ScopedName(blob_name)
all_blobs.append(blob)
workspace.CreateBlob(blob)
logger.info('Creating blob: {}'.format(blob))
net.DequeueBlobs(
roi_data_loader._blobs_queue_name, blob_names)
logger.info("Protobuf:\n" + str(net.Proto()))
if opts.profiler:
import cProfile
cProfile.runctx(
'loader_loop(roi_data_loader)', globals(), locals(),
sort='cumulative')
else:
loader_loop(roi_data_loader)
roi_data_loader.register_sigint_handler()
roi_data_loader.start(prefill=True)
total_time = 0
for i in range(opts.num_batches):
start_t = time.time()
for _ in range(opts.x_factor):
workspace.RunNetOnce(net)
total_time += (time.time() - start_t) / opts.x_factor
logger.info(
'{:d}/{:d}: Averge dequeue time: {:.3f}s [{:d}/{:d}]'.format(
i + 1, opts.num_batches, total_time / (i + 1),
roi_data_loader._minibatch_queue.qsize(),
cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE
)
)
# Sleep to simulate the time taken by running a little network
time.sleep(opts.sleep_time)
# To inspect:
# blobs = workspace.FetchBlobs(all_blobs)
# from IPython import embed; embed()
logger.info('Shutting down data loader...')
roi_data_loader.shutdown()
示例4: im_proposals
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def im_proposals(model, im):
"""Generate RPN proposals on a single image."""
inputs = {}
inputs['data'], im_scale, inputs['im_info'] = \
blob_utils.get_image_blob(im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE)
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v.astype(np.float32, copy=False))
workspace.RunNet(model.net.Proto().name)
if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_RPN:
k_max = cfg.FPN.RPN_MAX_LEVEL
k_min = cfg.FPN.RPN_MIN_LEVEL
rois_names = [
core.ScopedName('rpn_rois_fpn' + str(l))
for l in range(k_min, k_max + 1)
]
score_names = [
core.ScopedName('rpn_roi_probs_fpn' + str(l))
for l in range(k_min, k_max + 1)
]
blobs = workspace.FetchBlobs(rois_names + score_names)
# Combine predictions across all levels and retain the top scoring
boxes = np.concatenate(blobs[:len(rois_names)])
scores = np.concatenate(blobs[len(rois_names):]).squeeze()
# Discussion: one could do NMS again after combining predictions from
# the different FPN levels. Conceptually, it's probably the right thing
# to do. For arbitrary reasons, the original FPN RPN implementation did
# not do another round of NMS.
inds = np.argsort(-scores)[:cfg.TEST.RPN_POST_NMS_TOP_N]
scores = scores[inds]
boxes = boxes[inds, :]
else:
boxes, scores = workspace.FetchBlobs(
[core.ScopedName('rpn_rois'),
core.ScopedName('rpn_roi_probs')]
)
scores = scores.squeeze()
# Column 0 is the batch index in the (batch ind, x1, y1, x2, y2) encoding,
# so we remove it since we just want to return boxes
# Scale proposals back to the original input image scale
boxes = boxes[:, 1:] / im_scale
return boxes, scores
示例5: main
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def main(opts):
logger = logging.getLogger(__name__)
roidb = combined_roidb_for_training(
cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
logger.info('{:d} roidb entries'.format(len(roidb)))
roi_data_loader = RoIDataLoader(
roidb,
num_loaders=opts.num_loaders,
minibatch_queue_size=opts.minibatch_queue_size,
blobs_queue_capacity=opts.blobs_queue_capacity)
blob_names = roi_data_loader.get_output_names()
net = core.Net('dequeue_net')
net.type = 'dag'
all_blobs = []
for gpu_id in range(cfg.NUM_GPUS):
with core.NameScope('gpu_{}'.format(gpu_id)):
with core.DeviceScope(muji.OnGPU(gpu_id)):
for blob_name in blob_names:
blob = core.ScopedName(blob_name)
all_blobs.append(blob)
workspace.CreateBlob(blob)
logger.info('Creating blob: {}'.format(blob))
net.DequeueBlobs(
roi_data_loader._blobs_queue_name, blob_names)
logger.info("Protobuf:\n" + str(net.Proto()))
if opts.profiler:
import cProfile
cProfile.runctx(
'loader_loop(roi_data_loader)', globals(), locals(),
sort='cumulative')
else:
loader_loop(roi_data_loader)
roi_data_loader.register_sigint_handler()
roi_data_loader.start(prefill=True)
total_time = 0
for i in range(opts.num_batches):
start_t = time.time()
for _ in range(opts.x_factor):
workspace.RunNetOnce(net)
total_time += (time.time() - start_t) / opts.x_factor
logger.info('{:d}/{:d}: Averge dequeue time: {:.3f}s [{:d}/{:d}]'.
format(i + 1, opts.num_batches, total_time / (i + 1),
roi_data_loader._minibatch_queue.qsize(),
opts.minibatch_queue_size))
# Sleep to simulate the time taken by running a little network
time.sleep(opts.sleep_time)
# To inspect:
# blobs = workspace.FetchBlobs(all_blobs)
# from IPython import embed; embed()
logger.info('Shutting down data loader...')
roi_data_loader.shutdown()
示例6: main
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def main(opts):
logger = logging.getLogger(__name__)
roidb = combined_roidb_for_training(
cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
logger.info('{:d} roidb entries'.format(len(roidb)))
roi_data_loader = RoIDataLoader(
roidb,
num_loaders=opts.num_loaders,
minibatch_queue_size=opts.minibatch_queue_size,
blobs_queue_capacity=opts.blobs_queue_capacity)
blob_names = roi_data_loader.get_output_names()
net = core.Net('dequeue_net')
net.type = 'dag'
all_blobs = []
for gpu_id in range(cfg.NUM_GPUS):
with core.NameScope('gpu_{}'.format(gpu_id)):
with core.DeviceScope(muji.OnGPU(gpu_id)):
for blob_name in blob_names:
blob = core.ScopedName(blob_name)
all_blobs.append(blob)
workspace.CreateBlob(blob)
logger.info('Creating blob: {}'.format(blob))
net.DequeueBlobs(
roi_data_loader._blobs_queue_name, blob_names)
logger.info("Protobuf:\n" + str(net.Proto()))
if opts.profiler:
import cProfile
cProfile.runctx(
'loader_loop(roi_data_loader)', globals(), locals(),
sort='cumulative')
else:
loader_loop(roi_data_loader)
roi_data_loader.register_sigint_handler()
roi_data_loader.start(prefill=True)
total_time = 0
for i in range(opts.num_batches):
start_t = time.time()
for _ in range(opts.x_factor):
workspace.RunNetOnce(net)
total_time += (time.time() - start_t) / opts.x_factor
logger.info('{:d}/{:d}: Averge dequeue time: {:.3f}s [{:d}/{:d}]'.
format(i + 1, opts.num_batches, total_time / (i + 1),
roi_data_loader._minibatch_queue.qsize(),
opts.minibatch_queue_size))
# Sleep to simulate the time taken by running a little network
time.sleep(opts.sleep_time)
# To inspect:
# blobs = workspace.FetchBlobs(all_blobs)
# from IPython import embed; embed()
logger.info('Shutting down data loader (EnqueueBlob errors are ok)...')
roi_data_loader.shutdown()
示例7: im_proposals
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FetchBlobs [as 别名]
def im_proposals(model, im):
"""Generate RPN proposals on a single image."""
inputs = {}
inputs['data'], inputs['im_info'] = _get_image_blob(im)
scale = inputs['im_info'][0, 2]
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v.astype(np.float32, copy=False))
workspace.RunNet(model.net.Proto().name)
if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_RPN:
k_max = cfg.FPN.RPN_MAX_LEVEL
k_min = cfg.FPN.RPN_MIN_LEVEL
rois_names = [
core.ScopedName('rpn_rois_fpn' + str(l))
for l in range(k_min, k_max + 1)
]
score_names = [
core.ScopedName('rpn_roi_probs_fpn' + str(l))
for l in range(k_min, k_max + 1)
]
blobs = workspace.FetchBlobs(rois_names + score_names)
# Combine predictions across all levels and retain the top scoring
boxes = np.concatenate(blobs[:len(rois_names)])
scores = np.concatenate(blobs[len(rois_names):]).squeeze()
# Discussion: one could do NMS again after combining predictions from
# the different FPN levels. Conceptually, it's probably the right thing
# to do. For arbitrary reasons, the original FPN RPN implementation did
# not do another round of NMS.
inds = np.argsort(-scores)[:cfg.TEST.RPN_POST_NMS_TOP_N]
scores = scores[inds]
boxes = boxes[inds, :]
else:
boxes, scores = workspace.FetchBlobs(
[core.ScopedName('rpn_rois'),
core.ScopedName('rpn_roi_probs')]
)
scores = scores.squeeze()
# Column 0 is the batch index in the (batch ind, x1, y1, x2, y2) encoding,
# so we remove it since we just want to return boxes
# Scale proposals back to the original input image scale
boxes = boxes[:, 1:] / scale
return boxes, scores