本文整理汇总了Python中caffe2.python.workspace.FeedBlob方法的典型用法代码示例。如果您正苦于以下问题:Python workspace.FeedBlob方法的具体用法?Python workspace.FeedBlob怎么用?Python workspace.FeedBlob使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类caffe2.python.workspace
的用法示例。
在下文中一共展示了workspace.FeedBlob方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_add5_and_add5gradient_op
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def run_add5_and_add5gradient_op(device):
# clear the workspace before running the operator
workspace.ResetWorkspace()
add5 = core.CreateOperator("Add5",
["X"],
["Y"],
device_option=device)
print("==> Running Add5 op:")
workspace.FeedBlob("X", (np.random.rand(5, 5)), device_option=device)
print("Input of Add5: ", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(add5)
print("Output of Add5: ", workspace.FetchBlob("Y"))
print("\n\n==> Running Add5Gradient op:")
print("Input of Add5Gradient: ", workspace.FetchBlob("Y"))
add5gradient = core.CreateOperator("Add5Gradient",
["Y"],
["Z"],
device_option=device)
workspace.RunOperatorOnce(add5gradient)
print("Output of Add5Gradient: ", workspace.FetchBlob("Z"))
示例2: BroacastParameters
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def BroacastParameters(model, src_gpu, gpus):
log.info("Broadcasting parameters from gpu {} to gpu: {}".format(
src_gpu, ','.join([str(g) for g in gpus]))
)
for param in model.params:
if 'gpu_{}'.format(gpus[0]) in str(param):
for i in gpus:
blob = workspace.FetchBlob(str(param))
target_blob_name = str(param).replace(
'gpu_{}'.format(src_gpu),
'gpu_{}'.format(i)
)
log.info('broadcast {} -> {}'.format(
str(param), target_blob_name)
)
workspace.FetchBlob(str(param))
with core.DeviceScope(
core.DeviceOption(caffe2_pb2.CUDA, i)):
workspace.FeedBlob(target_blob_name, blob)
示例3: enqueue_blobs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def enqueue_blobs(self, gpu_id, blob_names, blobs):
"""Put a mini-batch on a BlobsQueue."""
assert len(blob_names) == len(blobs)
t = time.time()
dev = c2_utils.CudaDevice(gpu_id)
queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name)
blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names]
for (blob_name, blob) in zip(blob_names, blobs):
workspace.FeedBlob(blob_name, blob, device_option=dev)
logger.debug(
'enqueue_blobs {}: workspace.FeedBlob: {}'.
format(gpu_id, time.time() - t)
)
t = time.time()
op = core.CreateOperator(
'SafeEnqueueBlobs', [queue_name] + blob_names,
blob_names + [queue_name + '_enqueue_status'],
device_option=dev
)
workspace.RunOperatorOnce(op)
logger.debug(
'enqueue_blobs {}: workspace.RunOperatorOnce: {}'.
format(gpu_id, time.time() - t)
)
示例4: broadcast_parameters
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def broadcast_parameters(model):
"""Copy parameter blobs from GPU 0 over the corresponding parameter blobs
on GPUs 1 through cfg.NUM_GPUS - 1.
"""
if cfg.NUM_GPUS == 1:
# no-op if only running on a single GPU
return
def _do_broadcast(all_blobs):
assert len(all_blobs) % cfg.NUM_GPUS == 0, \
('Unexpected value for NUM_GPUS. Make sure you are not '
'running single-GPU inference with NUM_GPUS > 1.')
blobs_per_gpu = int(len(all_blobs) / cfg.NUM_GPUS)
for i in range(blobs_per_gpu):
blobs = [p for p in all_blobs[i::blobs_per_gpu]]
data = workspace.FetchBlob(blobs[0])
logger.debug('Broadcasting {} to'.format(str(blobs[0])))
for i, p in enumerate(blobs[1:]):
logger.debug(' |-> {}'.format(str(p)))
with c2_utils.CudaScope(i + 1):
workspace.FeedBlob(p, data)
_do_broadcast(model.params)
_do_broadcast([b + '_momentum' for b in model.TrainableParams()])
示例5: _run_test
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def _run_test(self, A, B, check_grad=False):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C'])
workspace.FeedBlob('A', A)
workspace.FeedBlob('B', B)
workspace.RunOperatorOnce(op)
C = workspace.FetchBlob('C')
if check_grad:
gc = gradient_checker.GradientChecker(
stepsize=0.005,
threshold=0.005,
device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
)
res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0])
self.assertTrue(res, 'Grad check failed')
dims = C.shape
C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]]
np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
示例6: _run_op_test
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def _run_op_test(self, X, I, check_grad=False):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y'])
workspace.FeedBlob('X', X)
workspace.FeedBlob('I', I)
workspace.RunOperatorOnce(op)
Y = workspace.FetchBlob('Y')
if check_grad:
gc = gradient_checker.GradientChecker(
stepsize=0.1,
threshold=0.001,
device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
)
res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0])
self.assertTrue(res, 'Grad check failed')
Y_ref = X[I]
np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
示例7: _update_bn_stats_gpu
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def _update_bn_stats_gpu(self):
"""
Copy to GPU.
Note: the actual blobs used at test time are "rm" and "riv"
"""
num_gpus = cfg.NUM_GPUS
root_gpu_id = cfg.ROOT_GPU_ID
for i in range(root_gpu_id, root_gpu_id + num_gpus):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, i)):
for bn_layer in self._bn_layers:
workspace.FeedBlob(
'gpu_{}/'.format(i) + bn_layer + '_bn_rm',
np.array(self._meanX_dict[bn_layer], dtype=np.float32),
)
"""
Note: riv is acutally running var (not running inv var)!!!!
"""
workspace.FeedBlob(
'gpu_{}/'.format(i) + bn_layer + '_bn_riv',
np.array(self._var_dict[bn_layer], dtype=np.float32),
)
示例8: enqueue_blobs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def enqueue_blobs(
self,
gpu_id,
enqueue_blobs_names,
blob_values,
):
enqueue_blobs_names = [
'gpu_{}/{}'.format(
gpu_id, enqueue_blob_name
) for enqueue_blob_name in enqueue_blobs_names
]
deviceOption = core.DeviceOption(caffe2_pb2.CUDA, gpu_id)
for (blob_name, blob) in zip(enqueue_blobs_names, blob_values):
workspace.FeedBlob(blob_name, blob, device_option=deviceOption)
queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name)
workspace.RunOperatorOnce(
core.CreateOperator(
'SafeEnqueueBlobs',
[queue_name] + enqueue_blobs_names,
enqueue_blobs_names + [queue_name + '_enqueue_status'],
device_option=deviceOption,
)
)
示例9: _run_speed_test
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def _run_speed_test(self, iters=5, N=1024):
"""This function provides an example of how to benchmark custom
operators using the Caffe2 'prof_dag' network execution type. Please
note that for 'prof_dag' to work, Caffe2 must be compiled with profiling
support using the `-DUSE_PROF=ON` option passed to `cmake` when building
Caffe2.
"""
net = core.Net('test')
net.Proto().type = 'prof_dag'
net.Proto().num_workers = 2
Y = net.BatchPermutation(['X', 'I'], 'Y')
Y_flat = net.FlattenToVec([Y], 'Y_flat')
loss = net.AveragedLoss([Y_flat], 'loss')
net.AddGradientOperators([loss])
workspace.CreateNet(net)
X = np.random.randn(N, 256, 14, 14)
for _i in range(iters):
I = np.random.permutation(N)
workspace.FeedBlob('X', X.astype(np.float32))
workspace.FeedBlob('I', I.astype(np.int32))
workspace.RunNet(net.Proto().name)
np.testing.assert_allclose(
workspace.FetchBlob('Y'), X[I], rtol=1e-5, atol=1e-08
)
示例10: _SetNewLr
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import FeedBlob [as 别名]
def _SetNewLr(self, cur_lr, new_lr):
"""Do the actual work of updating the model and workspace blobs.
"""
for i in range(cfg.NUM_GPUS):
with c2_utils.CudaScope(i):
workspace.FeedBlob(
'gpu_{}/lr'.format(i), np.array([new_lr], dtype=np.float32))
ratio = _get_lr_change_ratio(cur_lr, new_lr)
if cfg.SOLVER.SCALE_MOMENTUM and cur_lr > 1e-7 and \
ratio > cfg.SOLVER.SCALE_MOMENTUM_THRESHOLD:
self._CorrectMomentum(new_lr / cur_lr)