本文整理汇总了Python中caffe2.python.workspace.CreateBlob方法的典型用法代码示例。如果您正苦于以下问题:Python workspace.CreateBlob方法的具体用法?Python workspace.CreateBlob怎么用?Python workspace.CreateBlob使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类caffe2.python.workspace
的用法示例。
在下文中一共展示了workspace.CreateBlob方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_net
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def get_net(data_loader, name):
logger = logging.getLogger(__name__)
blob_names = data_loader.get_output_names()
net = core.Net(name)
net.type = 'dag'
for gpu_id in range(cfg.NUM_GPUS):
with core.NameScope('gpu_{}'.format(gpu_id)):
with core.DeviceScope(muji.OnGPU(gpu_id)):
for blob_name in blob_names:
blob = core.ScopedName(blob_name)
workspace.CreateBlob(blob)
net.DequeueBlobs(
data_loader._blobs_queue_name, blob_names)
logger.info("Protobuf:\n" + str(net.Proto()))
return net
示例2: initialize_model_from_cfg
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def initialize_model_from_cfg():
def create_input_blobs(net_def):
for op in net_def.op:
for blob_in in op.input:
if not workspace.HasBlob(blob_in):
workspace.CreateBlob(blob_in)
model = model_builder.create(
cfg.MODEL.TYPE, train=False,
init_params=cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING)
model_builder.add_inputs(model)
if cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING:
workspace.RunNetOnce(model.param_init_net)
net_utils.initialize_from_weights_file(
model, cfg.TEST.WEIGHTS, broadcast=False)
create_input_blobs(model.net.Proto())
workspace.CreateNet(model.net)
workspace.CreateNet(model.conv_body_net)
if cfg.MODEL.MASK_ON:
create_input_blobs(model.mask_net.Proto())
workspace.CreateNet(model.mask_net)
if cfg.MODEL.KEYPOINTS_ON:
create_input_blobs(model.keypoint_net.Proto())
workspace.CreateNet(model.keypoint_net)
return model
示例3: create_blobs_if_not_existed
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def create_blobs_if_not_existed(blob_names):
existd_names = set(workspace.Blobs())
for xx in blob_names:
if xx not in existd_names:
workspace.CreateBlob(str(xx))
示例4: create_input_blobs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def create_input_blobs(net_def):
for op in net_def.op:
for blob_in in op.input:
if not workspace.HasBlob(blob_in):
workspace.CreateBlob(blob_in)
示例5: create_enqueue_blobs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def create_enqueue_blobs(self):
blob_names = self.get_output_names()
enqueue_blob_names = [
'{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names
]
for gpu_id in range(self._num_gpus):
with c2_utils.NamedCudaScope(gpu_id):
for blob in enqueue_blob_names:
workspace.CreateBlob(core.ScopedName(blob))
return enqueue_blob_names
示例6: create_input_blobs_for_net
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def create_input_blobs_for_net(net_def):
for op in net_def.op:
for blob_in in op.input:
if not workspace.HasBlob(blob_in):
workspace.CreateBlob(blob_in)
示例7: add_training_inputs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def add_training_inputs(model, roidb=None):
"""Create network input ops and blobs used for training. To be called
*after* model_builder.create().
"""
# Implementation notes:
# Typically, one would create the input ops and then the rest of the net.
# However, creating the input ops depends on loading the dataset, which
# can take a few minutes for COCO.
# We prefer to avoid waiting so debugging can fail fast.
# Thus, we create the net *without input ops* prior to loading the
# dataset, and then add the input ops after loading the dataset.
# Since we defer input op creation, we need to do a little bit of surgery
# to place the input ops at the start of the network op list.
assert model.train, 'Training inputs can only be added to a trainable model'
if roidb is not None:
# To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
model.roi_data_loader = RoIDataLoader(
roidb,
num_loaders=cfg.DATA_LOADER.NUM_THREADS,
minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
)
orig_num_op = len(model.net._net.op)
blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True)
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
for blob_name in blob_names:
workspace.CreateBlob(core.ScopedName(blob_name))
model.net.DequeueBlobs(
model.roi_data_loader._blobs_queue_name, blob_names
)
# A little op surgery to move input ops to the start of the net
diff = len(model.net._net.op) - orig_num_op
new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
del model.net._net.op[:]
model.net._net.op.extend(new_op)
示例8: add_inference_inputs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def add_inference_inputs(model):
"""Create network input blobs used for inference."""
def create_input_blobs_for_net(net_def):
for op in net_def.op:
for blob_in in op.input:
if not workspace.HasBlob(blob_in):
workspace.CreateBlob(blob_in)
create_input_blobs_for_net(model.net.Proto())
if cfg.MODEL.MASK_ON:
create_input_blobs_for_net(model.mask_net.Proto())
if cfg.MODEL.KEYPOINTS_ON:
create_input_blobs_for_net(model.keypoint_net.Proto())
# ---------------------------------------------------------------------------- #
# ********************** DEPRECATED FUNCTIONALITY BELOW ********************** #
# ---------------------------------------------------------------------------- #
# ---------------------------------------------------------------------------- #
# Hardcoded functions to create various types of common models
#
# *** This type of model definition is deprecated ***
# *** Use the generic composable versions instead ***
#
# ---------------------------------------------------------------------------- #
示例9: add_inputs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def add_inputs(model, data_loader, suffix):
blob_names = data_loader.get_blob_names()
queue_name = data_loader._blobs_queue_name
def input_fn(model):
for blob_name in blob_names:
workspace.CreateBlob(scope.CurrentNameScope() + blob_name)
model.DequeueBlobs(queue_name, blob_names)
model.StopGradient('data{}'.format(suffix), 'data{}'.format(suffix))
return input_fn
示例10: create_threads
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def create_threads(self):
# "worker" threads to construct (partial) minibatches and put them on
# minibatch queue in CPU memory (limited by queue size).
self._worker_ids = self.get_worker_ids()
self._workers = [
threading.Thread(
target=self.minibatch_loader,
name='worker_{}'.format(worker_id),
args=[worker_id],
) for worker_id in self._worker_ids
]
# Create one BlobsQueue per GPU which holds the training data in GPU
# memory and feeds to the net.
root_gpu_id = cfg.ROOT_GPU_ID
for gpu_id in range(root_gpu_id, root_gpu_id + self._num_gpus):
with core.NameScope('gpu_{}'.format(gpu_id)):
self.create_blobs_queue(
queue_name=self._blobs_queue_name,
num_blobs=len(self._blobs_idx_map),
capacity=self._gpu_blobs_queue_capacity
)
# Launch enqueuer threads.
blob_names = self._blobs_idx_map.keys()
enqueue_blobs_names = [
'{}_{}_enqueue'.format(self._split, blob_name)
for blob_name in blob_names
]
for gpu_id in range(root_gpu_id, root_gpu_id + self._num_gpus):
with core.NameScope('gpu_{}'.format(gpu_id)):
with core.DeviceScope(
core.DeviceOption(caffe2_pb2.CUDA, gpu_id)
):
for blob_list in enqueue_blobs_names:
for blob in blob_list:
scoped_blob_name = scope.CurrentNameScope() + blob
workspace.CreateBlob(scoped_blob_name)
self._enqueuer = threading.Thread(
target=self.enqueue_blobs_thread, args=(0, enqueue_blobs_names)
)
示例11: add_training_inputs
# 需要导入模块: from caffe2.python import workspace [as 别名]
# 或者: from caffe2.python.workspace import CreateBlob [as 别名]
def add_training_inputs(model, roidb=None):
"""Create network input ops and blobs used for training. To be called
*after* model_builder.create().
"""
# Implementation notes:
# Typically, one would create the input ops and then the rest of the net.
# However, creating the input ops depends on loading the dataset, which
# can take a few minutes for COCO.
# We prefer to avoid waiting so debugging can fail fast.
# Thus, we create the net *without input ops* prior to loading the
# dataset, and then add the input ops after loading the dataset.
# Since we defer input op creation, we need to do a little bit of surgery
# to place the input ops at the start of the network op list.
assert model.train, 'Training inputs can only be added to a trainable model'
if roidb is not None:
# To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
model.roi_data_loader = RoIDataLoader(
roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS
)
orig_num_op = len(model.net._net.op)
blob_names = roi_data.minibatch.get_minibatch_blob_names(
is_training=True
)
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
for blob_name in blob_names:
workspace.CreateBlob(core.ScopedName(blob_name))
model.net.DequeueBlobs(
model.roi_data_loader._blobs_queue_name, blob_names
)
# A little op surgery to move input ops to the start of the net
diff = len(model.net._net.op) - orig_num_op
new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
del model.net._net.op[:]
model.net._net.op.extend(new_op)