本文整理汇总了Python中caffe2.python.brew.fc方法的典型用法代码示例。如果您正苦于以下问题:Python brew.fc方法的具体用法?Python brew.fc怎么用?Python brew.fc使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类caffe2.python.brew
的用法示例。
在下文中一共展示了brew.fc方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: AddLeNetModel
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def AddLeNetModel(model, data):
'''
This part is the standard LeNet model: from data to the softmax prediction.
For each convolutional layer we specify dim_in - number of input channels
and dim_out - number or output channels. Also each Conv and MaxPool layer changes the
image size. For example, kernel of size 5 reduces each side of an image by 4.
While when we have kernel and stride sizes equal 2 in a MaxPool layer, it divides
each side in half.
'''
# Image size: 28 x 28 -> 24 x 24
conv1 = brew.conv(model, data, 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=50, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=50 * 4 * 4, dim_out=500)
fc3 = brew.relu(model, fc3, fc3)
pred = brew.fc(model, fc3, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
return softmax
示例2: create_model
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def create_model(model_builder, model, enable_tensor_core, float16_compute, loss_scale=1.0):
"""Creates one model replica.
:param obj model_builder: A model instance that contains `forward_pass_builder` method.
:param model: Caffe2's model helper class instances.
:type model: :py:class:`caffe2.python.model_helper.ModelHelper`
:param bool enable_tensor_core: If true, Volta's tensor core ops are enabled.
:param float loss_scale: Scale loss for multi-GPU training.
:return: Head nodes (softmax or loss depending on phase)
"""
initializer = (pFP16Initializer if model_builder.dtype == 'float16' else Initializer)
with brew.arg_scope([brew.conv, brew.fc],
WeightInitializer=initializer,
BiasInitializer=initializer,
enable_tensor_core=enable_tensor_core,
float16_compute=float16_compute):
outputs = model_builder.forward_pass_builder(model, loss_scale=loss_scale)
return outputs
示例3: add_head_nodes
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def add_head_nodes(self, model, v, dim_in, fc_name, loss_scale=1.0):
"""Adds dense and softmax head nodes.
:param model_helper.ModelHelper model: Current model to use.
:param obj v: Input blobs.
:param int dim_in: Number of input features.
:param str fc_name: Name of a fully connected operator.
:param float loss_scale: For multi-GPU case.
:return: List with one head node. A softmax node if `phase` is `inference`
else `loss`.
"""
v = brew.fc(model, v, fc_name, dim_in=dim_in, dim_out=self.num_classes)
if self.dtype == 'float16':
print("[INFO] Converting logits from float16 to float32 for softmax layer")
v = model.net.HalfToFloat(v, v + '_fp32')
if self.phase == 'inference':
softmax = brew.softmax(model, v, 'softmax')
head_nodes = [softmax]
else:
softmax, loss = model.SoftmaxWithLoss([v, 'softmax_label'], ['softmax', 'loss'])
prefix = model.net.Proto().name
loss = model.Scale(loss, prefix + "_loss", scale=loss_scale)
head_nodes = [loss]
return head_nodes
示例4: forward_pass_builder
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def forward_pass_builder(self, model, loss_scale=1.0):
"""
This function adds the operators, layers to the network. It should return
a list of loss-blobs that are used for computing the loss gradient. This
function is also passed an internally calculated loss_scale parameter that
is used to scale your loss to normalize for the number of GPUs.
Signature: function(model, loss_scale)
"""
v = 'data'
dim_in = self.input_shape[0]
for idx in range(5):
v = brew.fc(model, v, 'fc%d' % (idx+1), dim_in=dim_in, dim_out=2048)
v = brew.relu(model, v, 'relu%d' % (idx+1))
dim_in = 2048
return self.add_head_nodes(model, v, dim_in, 'fc%d' % (idx+2), loss_scale=loss_scale)
示例5: forward_pass_builder
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def forward_pass_builder(self, model, loss_scale=1.0):
"""
This function adds the operators, layers to the network. It should return
a list of loss-blobs that are used for computing the loss gradient. This
function is also passed an internally calculated loss_scale parameter that
is used to scale your loss to normalize for the number of GPUs.
Signature: function(model, loss_scale)
"""
v = 'data'
dim_in = self.input_shape[0]
for idx in range(3):
v = brew.fc(model, v, 'fc%d' % (idx+1), dim_in=dim_in, dim_out=1024)
v = brew.relu(model, v, 'relu%d' % (idx+1))
dim_in = 1024
return self.add_head_nodes(model, v, dim_in, 'fc%d' % (idx+2), loss_scale=loss_scale)
示例6: create_model
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def create_model(m, device_opts) :
with core.DeviceScope(device_opts):
conv1 = brew.conv(m, 'data', 'conv1', dim_in=1, dim_out=20, kernel=5)
pool1 = brew.max_pool(m, conv1, 'pool1', kernel=2, stride=2)
conv2 = brew.conv(m, pool1, 'conv2', dim_in=20, dim_out=50, kernel=5)
pool2 = brew.max_pool(m, conv2, 'pool2', kernel=2, stride=2)
fc3 = brew.fc(m, pool2, 'fc3', dim_in=50 * 4 * 4, dim_out=500)
fc3 = brew.relu(m, fc3, fc3)
pred = brew.fc(m, fc3, 'pred', 500, 2)
softmax = brew.softmax(m, pred, 'softmax')
m.net.AddExternalOutput(softmax)
return softmax
# add loss and optimizer
示例7: AddLeNetModel
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def AddLeNetModel(model, data):
'''
This part is the standard LeNet model: from data to the softmax prediction.
For each convolutional layer we specify dim_in - number of input channels
and dim_out - number or output channels. Also each Conv and MaxPool layer changes the
image size. For example, kernel of size 5 reduces each side of an image by 4.
While when we have kernel and stride sizes equal 2 in a MaxPool layer, it divides
each side in half.
'''
# Image size: 28 x 28 -> 24 x 24
conv1 = brew.conv(model, data, 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the
# image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
return softmax
示例8: test_simple_cnnmodel
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def test_simple_cnnmodel(self):
model = cnn.CNNModelHelper("NCHW", name="overfeat")
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
relu1 = model.Relu(conv1, conv1)
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
with core.NameScope("classifier"):
fc = model.FC(pool1, "fc", 4096, 1000)
pred = model.Softmax(fc, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss(xent, "loss")
blob_name_tracker = {}
graph = tb.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
# cnn.CNNModelHelper is deprecated, so we also test with
# model_helper.ModelHelper. The model used in this test is taken from the
# Caffe2 MNIST tutorial. Also use show_simplified=False here.
示例9: test_simple_model
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def test_simple_model(self):
model = model_helper.ModelHelper(name="mnist")
# how come those inputs don't break the forward pass =.=a
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
with core.NameScope("classifier"):
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
model.net.RunAllOnMKL()
model.param_init_net.RunAllOnMKL()
model.AddGradientOperators([loss], skip=1)
blob_name_tracker = {}
graph = tb.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
示例10: forward_pass_builder
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def forward_pass_builder(self, model, loss_scale=1.0):
"""
This function adds the operators, layers to the network. It should return a list
of loss-blobs that are used for computing the loss gradient. This function is
also passed an internally calculated loss_scale parameter that is used to scale
your loss to normalize for the number of GPUs. Signature: function(model, loss_scale)
"""
is_inference = self.phase == 'inference'
v = 'data'
v = brew.conv(model, v, 'conv1', 3, 64, kernel=11, stride=4)
v = brew.relu(model, v, 'relu1')
v = brew.max_pool(model, v, 'pool1', kernel=3, stride=2)
v = brew.conv(model, v, 'conv2', 64, 192, kernel=5, pad=2, group=1)
v = brew.relu(model, v, 'relu2')
v = brew.max_pool(model, v, 'pool2', kernel=3, stride=2)
v = brew.conv(model, v, 'conv3', 192, 384, kernel=3, pad=1)
v = brew.relu(model, v, 'relu3')
v = brew.conv(model, v, 'conv4', 384, 256, kernel=3, pad=1, group=1)
v = brew.relu(model, v, 'relu4')
v = brew.conv(model, v, 'conv5', 256, 256, kernel=3, pad=1, group=1)
v = brew.relu(model, v, 'relu5')
v = brew.max_pool(model, v, 'pool5', kernel=3, stride=2)
v = brew.fc(model, v, 'fc6', dim_in=9216, dim_out=4096)
v = brew.relu(model, v, 'relu6')
v = brew.dropout(model, v, 'drop6', ratio=0.5, is_test=is_inference)
v = brew.fc(model, v, 'fc7', dim_in=4096, dim_out=4096)
v = brew.relu(model, v, 'relu7')
v = brew.dropout(model, v, 'drop7', ratio=0.5, is_test=is_inference)
return self.add_head_nodes(model, v, 4096, 'fc8', loss_scale=loss_scale)
示例11: forward_pass_builder
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def forward_pass_builder(self, model, loss_scale=1.0):
"""
This function adds the operators, layers to the network. It should return
a list of loss-blobs that are used for computing the loss gradient. This
function is also passed an internally calculated loss_scale parameter that
is used to scale your loss to normalize for the number of GPUs.
Signature: function(model, loss_scale)
"""
is_inference = self.phase == 'inference'
layers, filters = VGG.specs[self.__model]['specs']
v = 'data'
dim_in = self.input_shape[0]
for i, num in enumerate(layers):
for j in range(num):
v = brew.conv(model, v, 'conv%d_%d' % (i+1, j+1), dim_in, filters[i], kernel=3, pad=1)
v = brew.relu(model, v, 'relu%d_%d' % (i+1, j+1))
dim_in = filters[i]
v = brew.max_pool(model, v, 'pool%d' % (i+1), kernel=2, stride=2)
dim_in = 25088 # 512 * 7 * 7 (output tensor of previous max pool layer)
for i in range(2):
v = brew.fc(model, v, 'fc%d' % (6+i), dim_in=dim_in, dim_out=4096)
v = brew.relu(model, v, 'relu%d' % (6+i))
v = brew.dropout(model, v, 'drop%d' % (6+i), ratio=0.5, is_test=is_inference)
dim_in = 4096
return self.add_head_nodes(model, v, 4096, 'fc8', loss_scale=loss_scale)
示例12: forward_pass_builder
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def forward_pass_builder(self, model, loss_scale=1.0):
"""
This function adds the operators, layers to the network. It should return a list
of loss-blobs that are used for computing the loss gradient. This function is
also passed an internally calculated loss_scale parameter that is used to scale
your loss to normalize for the number of GPUs. Signature: function(model, loss_scale)
"""
is_inference = self.phase == 'inference'
v = 'data'
# Layer1
v = brew.conv(model, v, 'conv1', 3, 96, kernel=11, stride=4)
v = brew.relu(model, v, 'relu1')
v = brew.max_pool(model, v, 'pool1', kernel=2, stride=2)
# Layer2
v = brew.conv(model, v, 'conv2', 96, 256, kernel=5)
v = brew.relu(model, v, 'relu2')
v = brew.max_pool(model, v, 'pool2', kernel=2, stride=2)
# Layer3
v = brew.conv(model, v, 'conv3', 256, 512, kernel=3, pad=1)
v = brew.relu(model, v, 'relu3')
# Layer4
v = brew.conv(model, v, 'conv4', 512, 1024, kernel=3, pad=1)
v = brew.relu(model, v, 'relu4')
# Layer5
v = brew.conv(model, v, 'conv5', 1024, 1024, kernel=3, pad=1)
v = brew.relu(model, v, 'relu5')
v = brew.max_pool(model, v, 'pool5', kernel=2, stride=2)
# Layer6
v = brew.fc(model, v, 'fc6', dim_in=6*6*1024, dim_out=3072)
v = brew.relu(model, v, 'relu6')
v = brew.dropout(model, v, 'drop6', ratio=0.5, is_test=is_inference)
# Layer7
v = brew.fc(model, v, 'fc7', dim_in=3072, dim_out=4096)
v = brew.relu(model, v, 'relu7')
v = brew.dropout(model, v, 'drop7', ratio=0.5, is_test=is_inference)
return self.add_head_nodes(model, v, 4096, 'fc8', loss_scale=loss_scale)
示例13: forward_pass_builder
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def forward_pass_builder(self, model, loss_scale=1.0):
"""
This function adds the operators, layers to the network. It should return a list
of loss-blobs that are used for computing the loss gradient. This function is
also passed an internally calculated loss_scale parameter that is used to scale
your loss to normalize for the number of GPUs. Signature: function(model, loss_scale)
"""
is_inference = self.phase == 'inference'
v = 'data'
v = brew.conv(model, v, 'conv1', 3, 96, kernel=11, stride=4)
v = brew.relu(model, v, 'relu1')
v = brew.lrn(model, v, 'norm1', size=5, alpha=0.0001, beta=0.75)
v = brew.max_pool(model, v, 'pool1', kernel=3, stride=2)
v = brew.conv(model, v, 'conv2', 96, 256, kernel=5, pad=2, group=1)
v = brew.relu(model, v, 'relu2')
v = brew.lrn(model, v, 'norm2', size=5, alpha=0.0001, beta=0.75)
v = brew.max_pool(model, v, 'pool2', kernel=3, stride=2)
v = brew.conv(model, v, 'conv3', 256, 384, kernel=3, pad=1)
v = brew.relu(model, v, 'relu3')
v = brew.conv(model, v, 'conv4', 384, 384, kernel=3, pad=1, group=1)
v = brew.relu(model, v, 'relu4')
v = brew.conv(model, v, 'conv5', 384, 256, kernel=3, pad=1, group=1)
v = brew.relu(model, v, 'relu5')
v = brew.max_pool(model, v, 'pool5', kernel=3, stride=2)
v = brew.fc(model, v, 'fc6', dim_in=9216, dim_out=4096)
v = brew.relu(model, v, 'relu6')
v = brew.dropout(model, v, 'drop6', ratio=0.5, is_test=is_inference)
v = brew.fc(model, v, 'fc7', dim_in=4096, dim_out=4096)
v = brew.relu(model, v, 'relu7')
v = brew.dropout(model, v, 'drop7', ratio=0.5, is_test=is_inference)
return self.add_head_nodes(model, v, 4096, 'fc8', loss_scale=loss_scale)
示例14: Add_Original_CIFAR10_Model
# 需要导入模块: from caffe2.python import brew [as 别名]
# 或者: from caffe2.python.brew import fc [as 别名]
def Add_Original_CIFAR10_Model(model, data, num_classes, image_height, image_width, image_channels):
# Convolutional layer 1
conv1 = brew.conv(model, data, 'conv1', dim_in=image_channels, dim_out=32, kernel=5, stride=1, pad=2)
h,w = update_dims(height=image_height, width=image_width, kernel=5, stride=1, pad=2)
# Pooling layer 1
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=3, stride=2)
h,w = update_dims(height=h, width=w, kernel=3, stride=2, pad=0)
# ReLU layer 1
relu1 = brew.relu(model, pool1, 'relu1')
# Convolutional layer 2
conv2 = brew.conv(model, relu1, 'conv2', dim_in=32, dim_out=32, kernel=5, stride=1, pad=2)
h,w = update_dims(height=h, width=w, kernel=5, stride=1, pad=2)
# ReLU layer 2
relu2 = brew.relu(model, conv2, 'relu2')
# Pooling layer 1
pool2 = brew.average_pool(model, relu2, 'pool2', kernel=3, stride=2)
h,w = update_dims(height=h, width=w, kernel=3, stride=2, pad=0)
# Convolutional layer 3
conv3 = brew.conv(model, pool2, 'conv3', dim_in=32, dim_out=64, kernel=5, stride=1, pad=2)
h,w = update_dims(height=h, width=w, kernel=5, stride=1, pad=2)
# ReLU layer 3
relu3 = brew.relu(model, conv3, 'relu3')
# Pooling layer 3
pool3 = brew.average_pool(model, relu3, 'pool3', kernel=3, stride=2)
h,w = update_dims(height=h, width=w, kernel=3, stride=2, pad=0)
# Fully connected layers
fc1 = brew.fc(model, pool3, 'fc1', dim_in=64*h*w, dim_out=64)
fc2 = brew.fc(model, fc1, 'fc2', dim_in=64, dim_out=num_classes)
# Softmax layer
softmax = brew.softmax(model, fc2, 'softmax')
return softmax
# ## Test Saved Model From Part 1
#
# ### Construct Model for Testing
#
# The first thing we need is a model helper object that we can attach the lmdb reader to.
# In[4]:
# Create a ModelHelper object with init_params=False