本文整理汇总了Python中caffe.proto.caffe_pb2.LayerParameter方法的典型用法代码示例。如果您正苦于以下问题:Python caffe_pb2.LayerParameter方法的具体用法?Python caffe_pb2.LayerParameter怎么用?Python caffe_pb2.LayerParameter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类caffe.proto.caffe_pb2
的用法示例。
在下文中一共展示了caffe_pb2.LayerParameter方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_layer_list
# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import LayerParameter [as 别名]
def get_layer_list(self):
try:
from caffe.proto import caffe_pb2
layer = caffe_pb2.LayerParameter()
param_list = [f.name for f in layer.DESCRIPTOR.fields if f.name.endswith('_param')]
layer_list = [type(getattr(layer, s)).__name__ for s in param_list]
layer_list = [s[:-len('Parameter')] for s in layer_list]
return layer_list
except:
return []
示例2: param_name_dict
# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import LayerParameter [as 别名]
def param_name_dict():
"""Find out the correspondence between layer names and parameter names."""
layer = caffe_pb2.LayerParameter()
# get all parameter names (typically underscore case) and corresponding
# type names (typically camel case), which contain the layer names
# (note that not all parameters correspond to layers, but we'll ignore that)
param_names = [f.name for f in layer.DESCRIPTOR.fields if f.name.endswith('_param')]
param_type_names = [type(getattr(layer, s)).__name__ for s in param_names]
# strip the final '_param' or 'Parameter'
param_names = [s[:-len('_param')] for s in param_names]
param_type_names = [s[:-len('Parameter')] for s in param_type_names]
return dict(zip(param_type_names, param_names))
示例3: _to_proto
# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import LayerParameter [as 别名]
def _to_proto(self):
bottom_names = []
for inp in self.inputs:
# inp._to_proto(layers, names, autonames)
bottom_names.append(inp)
layer = caffe_pb2.LayerParameter()
layer.type = self.type_name
layer.bottom.extend(bottom_names)
if self.in_place:
layer.top.extend(layer.bottom)
else:
for top in self.outputs:
layer.top.append(top)
layer.name = self.layer_name
# print(self.type_name + "...")
for k, v in six.iteritems(self.params):
# special case to handle generic *params
# print("generating "+k+"...")
if k.endswith('param'):
assign_proto(layer, k, v)
else:
try:
assign_proto(getattr(layer,
_param_names[self.type_name] + '_param'), k, v)
except (AttributeError, KeyError):
assign_proto(layer, k, v)
return layer
示例4: stack
# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import LayerParameter [as 别名]
def stack(net, level):
n = pu.copy_net_params(net)
enc_prev = None
dec_prev = None
enc = None
dec = None
for l in n.layer:
if l.name.lower().endswith('encode%03dneuron' % (level - 1)):
enc = pu.copy_msg(l, LayerParameter)
for b in list(enc.bottom):
l.bottom.remove(b)
for t in list(l.top):
l.bottom.append(unicode(t)) # preserve order of layer bottoms, label as bottom has to come last
elif l.name.lower().endswith('decode%03dneuron' % (level - 1)):
dec_prev = l
dec = pu.copy_msg(l, LayerParameter)
enc.name = 'encode%03dneuron' % level
dec.name = 'encode%03dneuron' % level
return n
示例5: main
# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import LayerParameter [as 别名]
def main(args):
caffe.set_mode_cpu()
fc_net = caffe.Net(args.model, args.weights, caffe.TEST)
# make fully conv prototxt
fc_proto = caffe_pb2.NetParameter()
with open(args.model, 'r') as f:
pb.text_format.Parse(f.read(), fc_proto)
layers = []
fc_to_conv_dic = {}
for layer in fc_proto.layer:
if layer.type != 'InnerProduct':
layers.append(layer)
continue
new_ = caffe_pb2.LayerParameter()
new_.name = layer.name + '_conv'
fc_to_conv_dic[layer.name] = new_.name
new_.type = 'Convolution'
new_.bottom.extend(layer.bottom)
new_.top.extend(layer.top)
new_.convolution_param.num_output = layer.inner_product_param.num_output
bottom_shape = fc_net.blobs[layer.bottom[0]].data.shape
if len(bottom_shape) == 4:
new_.convolution_param.kernel_h = bottom_shape[2]
new_.convolution_param.kernel_w = bottom_shape[3]
else:
new_.convolution_param.kernel_size = 1
layers.append(new_)
conv_proto = caffe_pb2.NetParameter()
conv_proto.CopyFrom(fc_proto)
del(conv_proto.layer[:])
conv_proto.layer.extend(layers)
if args.save_model is None:
name, ext = osp.splitext(args.model)
args.save_model = name + '_fully_conv' + ext
with open(args.save_model, 'w') as f:
f.write(pb.text_format.MessageToString(conv_proto))
# make fully conv parameters
conv_net = caffe.Net(args.save_model, args.weights, caffe.TEST)
for fc, conv in fc_to_conv_dic.iteritems():
conv_net.params[conv][0].data.flat = fc_net.params[fc][0].data.flat
conv_net.params[conv][1].data[...] = fc_net.params[fc][1].data
if args.save_weights is None:
name, ext = osp.splitext(args.weights)
args.save_weights = name + '_fully_conv' + ext
conv_net.save(args.save_weights)
print args.model, args.weights