当前位置: 首页>>代码示例>>Python>>正文


Python caffe_pb2.BlobProto方法代码示例

本文整理汇总了Python中caffe.proto.caffe_pb2.BlobProto方法的典型用法代码示例。如果您正苦于以下问题:Python caffe_pb2.BlobProto方法的具体用法?Python caffe_pb2.BlobProto怎么用?Python caffe_pb2.BlobProto使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在caffe.proto.caffe_pb2的用法示例。


在下文中一共展示了caffe_pb2.BlobProto方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: add_missing_biases

# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 别名]
def add_missing_biases(caffenet_weights):
    for layer in caffenet_weights.layer:
        if layer.type == 'Convolution' and len(layer.blobs) == 1:
            num_filters = layer.blobs[0].shape.dim[0]
            bias_blob = caffe_pb2.BlobProto()
            bias_blob.data.extend(np.zeros(num_filters))
            bias_blob.num, bias_blob.channels, bias_blob.height = 1, 1, 1
            bias_blob.width = num_filters
            layer.blobs.extend([bias_blob]) 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:11,代码来源:pickle_caffe_blobs.py

示例2: array_to_blobproto

# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 别名]
def array_to_blobproto(arr, diff=None):
    """Converts a 4-dimensional array to blob proto. If diff is given, also
    convert the diff. You need to make sure that arr and diff have the same
    shape, and this function does not do sanity check.
    """
    if arr.ndim != 4:
        raise ValueError('Incorrect array shape.')
    blob = caffe_pb2.BlobProto()
    blob.num, blob.channels, blob.height, blob.width = arr.shape
    blob.data.extend(arr.astype(float).flat)
    if diff is not None:
        blob.diff.extend(diff.astype(float).flat)
    return blob 
开发者ID:XiaohangZhan,项目名称:mix-and-match,代码行数:15,代码来源:io.py

示例3: array_to_blobproto

# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 别名]
def array_to_blobproto(arr, diff=None):
    """Converts a N-dimensional array to blob proto. If diff is given, also
    convert the diff. You need to make sure that arr and diff have the same
    shape, and this function does not do sanity check.
    """
    blob = caffe_pb2.BlobProto()
    blob.shape.dim.extend(arr.shape)
    blob.data.extend(arr.astype(float).flat)
    if diff is not None:
        blob.diff.extend(diff.astype(float).flat)
    return blob 
开发者ID:QinganZhao,项目名称:Deep-Learning-Based-Structural-Damage-Detection,代码行数:13,代码来源:io.py

示例4: load_mean_bgr

# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 别名]
def load_mean_bgr():
    """ bgr mean pixel value image, [0, 255]. [height, width, 3] """
    with open("data/ResNet_mean.binaryproto", mode='rb') as f:
        data = f.read()
    blob = caffe_pb2.BlobProto()
    blob.ParseFromString(data)

    mean_bgr = caffe.io.blobproto_to_array(blob)[0]
    assert mean_bgr.shape == (3, 224, 224)

    return mean_bgr.transpose((1, 2, 0)) 
开发者ID:ry,项目名称:tensorflow-resnet,代码行数:13,代码来源:convert.py

示例5: get_transformer

# 需要导入模块: from caffe.proto import caffe_pb2 [as 别名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 别名]
def get_transformer(deploy_file, mean_file=None):
    """
    Returns an instance of caffe.io.Transformer

    Arguments:
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    mean_file -- path to a .binaryproto file (optional)
    """
    network = caffe_pb2.NetParameter()
    with open(deploy_file) as infile:
        text_format.Merge(infile.read(), network)

    dims = network.input_dim

    t = caffe.io.Transformer(
            inputs = {'data': dims}
            )
    t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)

    # color images
    if dims[1] == 3:
        # channel swap
        t.set_channel_swap('data', (2,1,0))

    if mean_file:
        # set mean pixel
        with open(mean_file) as infile:
            blob = caffe_pb2.BlobProto()
            blob.MergeFromString(infile.read())
            if blob.HasField('shape'):
                blob_dims = blob.shape
                assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
            elif blob.HasField('num') and blob.HasField('channels') and \
                    blob.HasField('height') and blob.HasField('width'):
                blob_dims = (blob.num, blob.channels, blob.height, blob.width)
            else:
                raise ValueError('blob does not provide shape or 4d dimensions')
            pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
            t.set_mean('data', pixel)

    return t 
开发者ID:dropbox,项目名称:hocrux,代码行数:45,代码来源:example.py


注:本文中的caffe.proto.caffe_pb2.BlobProto方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。