当前位置: 首页>>代码示例>>Python>>正文


Python caffe.log方法代码示例

本文整理汇总了Python中caffe.log方法的典型用法代码示例。如果您正苦于以下问题:Python caffe.log方法的具体用法?Python caffe.log怎么用?Python caffe.log使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在caffe的用法示例。


在下文中一共展示了caffe.log方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: import caffe [as 别名]
# 或者: from caffe import log [as 别名]
def train(
        solver,  # solver proto definition
        snapshot,  # solver snapshot to restore
        gpus,  # list of device ids
        timing=False,  # show timing info for compute and communications
):
    # NCCL uses a uid to identify a session
    uid = caffe.NCCL.new_uid()

    caffe.init_log()
    caffe.log('Using devices %s' % str(gpus))

    procs = []
    for rank in range(len(gpus)):
        p = Process(target=solve_step,
                    args=(solver, snapshot, gpus, timing, uid, rank))
        p.daemon = True
        p.start()
        procs.append(p)
    for p in procs:
        p.join() 
开发者ID:zhujiagang,项目名称:DTPP,代码行数:23,代码来源:multigpu.py

示例2: train_net_multi_gpu

# 需要导入模块: import caffe [as 别名]
# 或者: from caffe import log [as 别名]
def train_net_multi_gpu(solver_prototxt, roidb, output_dir, pretrained_model,
                        max_iter, gpus, reload):
    """Train a Fast R-CNN network."""
    roidb = filter_roidb(roidb)
    uid = caffe.NCCL.new_uid()
    caffe.init_log()
    caffe.log('Using devices %s' % str(gpus))
    procs = []

    for rank in range(len(gpus)):
        p = Process(target=solve,
                    args=(
                        solver_prototxt, roidb, pretrained_model, gpus, uid,
                        rank,
                        output_dir, max_iter, reload))
        p.daemon = True
        p.start()
        procs.append(p)
    for p in procs:
        p.join() 
开发者ID:po0ya,项目名称:face-magnet,代码行数:22,代码来源:train_multi_gpu.py

示例3: train

# 需要导入模块: import caffe [as 别名]
# 或者: from caffe import log [as 别名]
def train(
        solver,  # solver proto definition
        snapshot,  # solver snapshot to restore
        gpus,  # list of device ids
        timing=False,  # show timing info for compute and communications
):
    # NCCL uses a uid to identify a session
    uid = caffe.NCCL.new_uid()

    caffe.init_log()
    caffe.log('Using devices %s' % str(gpus))

    procs = []
    for rank in range(len(gpus)):
        p = Process(target=solve,
                    args=(solver, snapshot, gpus, timing, uid, rank))
        p.daemon = True
        p.start()
        procs.append(p)
    for p in procs:
        p.join() 
开发者ID:QinganZhao,项目名称:Deep-Learning-Based-Structural-Damage-Detection,代码行数:23,代码来源:train.py

示例4: time

# 需要导入模块: import caffe [as 别名]
# 或者: from caffe import log [as 别名]
def time(solver, nccl):
    fprop = []
    bprop = []
    total = caffe.Timer()
    allrd = caffe.Timer()
    for _ in range(len(solver.net.layers)):
        fprop.append(caffe.Timer())
        bprop.append(caffe.Timer())
    display = solver.param.display

    def show_time():
        if solver.iter % display == 0:
            s = '\n'
            for i in range(len(solver.net.layers)):
                s += 'forw %3d %8s ' % (i, solver.net._layer_names[i])
                s += ': %.2f\n' % fprop[i].ms
            for i in range(len(solver.net.layers) - 1, -1, -1):
                s += 'back %3d %8s ' % (i, solver.net._layer_names[i])
                s += ': %.2f\n' % bprop[i].ms
            s += 'solver total: %.2f\n' % total.ms
            s += 'allreduce: %.2f\n' % allrd.ms
            caffe.log(s)

    solver.net.before_forward(lambda layer: fprop[layer].start())
    solver.net.after_forward(lambda layer: fprop[layer].stop())
    solver.net.before_backward(lambda layer: bprop[layer].start())
    solver.net.after_backward(lambda layer: bprop[layer].stop())
    solver.add_callback(lambda: total.start(), lambda: (total.stop(), allrd.start()))
    solver.add_callback(nccl)
    solver.add_callback(lambda: '', lambda: (allrd.stop(), show_time())) 
开发者ID:zhujiagang,项目名称:DTPP,代码行数:32,代码来源:multigpu.py

示例5: train

# 需要导入模块: import caffe [as 别名]
# 或者: from caffe import log [as 别名]
def train(
        solver,  # solver proto definition
        snapshot,  # solver snapshot to restore
        use_cpu, #whether use cpu
        gpus,  # list of device ids
        timing=False,  # show timing info for compute and communications
):
    caffe.init_log(0,True)
    caffe.log('Using devices %s' % str(gpus))

    if use_cpu == True:
        p = Process(target=cpu_solve,
                    args=(solver, snapshot, timing))

        p.daemon = True
        p.start()
        p.join()
    else:
        # NCCL uses a uid to identify a session
        uid = caffe.NCCL.new_uid()

        procs = []
        for rank in range(len(gpus)):
            p = Process(target=solve,
                        args=(solver, snapshot, gpus, timing, uid, rank))
            p.daemon = True
            p.start()
            procs.append(p)
        for p in procs:
            p.join() 
开发者ID:ucloud,项目名称:uai-sdk,代码行数:32,代码来源:train_large_file.py


注:本文中的caffe.log方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。