本文整理汇总了Python中builtins.print方法的典型用法代码示例。如果您正苦于以下问题:Python builtins.print方法的具体用法?Python builtins.print怎么用?Python builtins.print使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类builtins
的用法示例。
在下文中一共展示了builtins.print方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: distributed_init
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def distributed_init(args):
if args.distributed_world_size == 1:
raise ValueError('Cannot initialize distributed with distributed_world_size=1')
print('| distributed init (rank {}): {}'.format(
args.distributed_rank, args.distributed_init_method), flush=True)
if args.distributed_init_method.startswith('tcp://'):
torch.distributed.init_process_group(
backend=args.distributed_backend, init_method=args.distributed_init_method,
world_size=args.distributed_world_size, rank=args.distributed_rank)
else:
torch.distributed.init_process_group(
backend=args.distributed_backend, init_method=args.distributed_init_method,
world_size=args.distributed_world_size)
args.distributed_rank = torch.distributed.get_rank()
if not is_master(args):
suppress_output()
return args.distributed_rank
示例2: _print_banner
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def _print_banner(self):
banner = BANNER
banner_len = len(max(banner.split(os.linesep), key=len))
author = '{0:^{1}}'.format(f"{framework.Colors.O}[{self._name} v{__version__}, {__author__}]{framework.Colors.N}", banner_len + 8)
if self._accessible:
banner = BANNER_SMALL
author = f"{framework.Colors.O}{self._name}, version {__version__}, by {__author__}{framework.Colors.N}"
print(banner)
print(author)
print('')
counts = [(len(self._loaded_category[x]), x) for x in self._loaded_category]
if counts:
count_len = len(max([self.to_unicode_str(x[0]) for x in counts], key=len))
for count in sorted(counts, reverse=True):
cnt = f"[{count[0]}]"
print(f"{framework.Colors.B}{cnt.ljust(count_len+2)} {count[1].title()} modules{framework.Colors.N}")
# create dynamic easter egg command based on counts
setattr(self, f"do_{count[0]}", self._menu_egg)
else:
self.alert('No modules enabled/installed.')
print('')
示例3: _menu_egg
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def _menu_egg(self, params):
eggs = [
'Really? A menu option? Try again.',
'You clearly need \'help\'.',
'That makes no sense to me.',
'*grunt* *grunt* Nope. I got nothin\'.',
'Wait for it...',
'This is not the Social Engineering Toolkit.',
'Don\'t you think if that worked the numbers would at least be in order?',
'Reserving that option for the next-NEXT generation of the framework.',
'You\'ve clearly got the wrong framework. Attempting to start SET...',
'1980 called. They want there menu driven UI back.',
]
print(random.choice(eggs))
return
#==================================================
# WORKSPACE METHODS
#==================================================
示例4: _do_marketplace_search
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def _do_marketplace_search(self, params):
'''Searches marketplace modules'''
modules = [m for m in self._module_index]
if params:
self.output(f"Searching module index for '{params}'...")
modules = self._search_module_index(params)
if modules:
rows = []
for module in sorted(modules, key=lambda m: m['path']):
row = []
for key in ('path', 'version', 'status', 'last_updated'):
row.append(module[key])
row.append('*' if module['dependencies'] else '')
row.append('*' if module['required_keys'] else '')
rows.append(row)
header = ('Path', 'Version', 'Status', 'Updated', 'D', 'K')
self.table(rows, header=header)
print(f"{self.spacer}D = Has dependencies. See info for details.")
print(f"{self.spacer}K = Requires keys. See info for details.{os.linesep}")
else:
self.error('No modules found.')
self._help_marketplace_search()
示例5: init_distributed_mode
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def init_distributed_mode(args):
args.distributed = False
if args.device == 'cuda' and 'WORLD_SIZE' in os.environ:
args.distributed = True
args.world_size = int(os.environ['WORLD_SIZE'])
args.rank = int(os.environ['RANK'])
torch.cuda.set_device(args.local_rank)
# args.local_rank, os.environ["RANK"],os.environ['WORLD_SIZE'] 会自动赋值
print("args.local_rank:{},RANK:{},WORLD_SIZE:{}".format(args.local_rank, os.environ["RANK"],
os.environ['WORLD_SIZE']))
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
setup_for_distributed(args.rank == 0)
示例6: train_one_epoch
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args):
epoch_loss = 0.0
for image, target, input_len, target_len in tqdm(data_loader):
image = image.to(device)
# print(target, target_len, input_len)
outputs = model(image.to(torch.float32)) # [B,N,C]
outputs = torch.log_softmax(outputs, dim=2)
outputs = outputs.permute([1, 0, 2]) # [N,B,C]
loss = criterion(outputs[:], target, input_len, target_len)
# 梯度更新
model.zero_grad()
loss.backward()
optimizer.step()
# 当前轮的loss
epoch_loss += loss.item() * image.size(0)
if np.isnan(loss.item()):
print(target, input_len, target_len)
epoch_loss = epoch_loss / len(data_loader.dataset)
# 打印日志,保存权重
print('Epoch: {}/{} loss: {:03f}'.format(epoch + 1, args.epochs, epoch_loss))
return epoch_loss
示例7: init_distributed_mode
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
示例8: show_banner
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def show_banner(self):
banner = open(os.path.join(self.data_path, "banner.txt")).read()
print(banner)
# print version
print(' '*15 + __version__)
print('')
if self.loaded_category == {}:
print(
f'{framework.Colors.B}[0] No Module To Display{framework.Colors.N}')
else:
counts = [(self.loaded_category[x], x)
for x in self.loaded_category] if self.loaded_category != [] else [0]
count_len = len(max([str(x[0]) for x in counts], key=len))
for count in sorted(counts, reverse=True):
cnt = f'[{count[0]}]'
mod_name = count[1].title() if '/' in count[1] else count[1]
print(f'{framework.Colors.B}{cnt.ljust(count_len + 2)} {mod_name} modules{framework.Colors.N}')
print('')
示例9: plot_pairwise_transfer_learning
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def plot_pairwise_transfer_learning(root_dir,classifier_name,archive_name,
df_perf,df_transfer,fig,color,title,new_classifier_name,agg='max',already_calculated=False):
"""
"""
print('Drwaing',agg,' accuracy plot with transfer learning\
vs without transfer learning')
if agg=='maximum':
df_transfer_agg = df_transfer.max(axis=0)
elif agg == 'minimum':
df_transfer_agg = df_transfer.min(axis=0)
elif agg=='agg':
# already aggregated
df_transfer_agg = df_transfer
elif agg=='median':
df_transfer_agg = df_transfer.median(axis=0)
else:
df_transfer_agg = df_transfer.loc[agg]
df_perf= concat_to_df_perf(df_perf,df_perf,df_transfer_agg,classifier_name,
new_classifier_name,archive_name,print_win_losses=True,
already_calculated = already_calculated)
plot_pairwise(root_dir,classifier_name,new_classifier_name,
res_df=df_perf, title=title, fig=fig,color=color,label=agg)
示例10: concat_to_df_perf
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def concat_to_df_perf(df_perf,df_to_concat,df_transfer_agg,classifier_name,new_classifier_name,
archive_name,print_win_losses=False,already_calculated = False):
original_acc = df_perf.loc[df_perf['classifier_name']==classifier_name]['accuracy'].values
if already_calculated == False:
# calculate the accuracy using the percentrage already computed
df_transfer_agg[:] = (df_transfer_agg.values*original_acc)/100 + original_acc
# win loss draw
if print_win_losses == True:
print(classifier_name,'vs',new_classifier_name)
uniq , counts = np.unique(original_acc<df_transfer_agg.values,return_counts=True)
print('\tWin:',counts[-1])
uniq , counts = np.unique(original_acc>df_transfer_agg.values,return_counts=True)
print('\tLosses:',counts[-1])
uniq , counts = np.unique(original_acc==df_transfer_agg.values,return_counts=True)
print('\tDraw:',counts[-1])
# create a dataframe
df_perf_transfer = pd.DataFrame({'dataset_name':df_transfer_agg.index,
'accuracy':df_transfer_agg.values})
# add the neccessary attributes
df_perf_transfer['classifier_name']=new_classifier_name
df_perf_transfer['archive_name'] = archive_name
# concat with the original classifier's results
return pd.concat([df_to_concat,df_perf_transfer],sort=False)
示例11: Print_Function
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def Print_Function():
""" Print out the source of the current function """
if off_mode:
return
tmp_str = inspect.getsource(inspect.currentframe().f_back)
if GaLatexPrinter.latex_flg:
#print '#Code for '+fct_name
print(r'##\begin{lstlisting}[language=Python,showspaces=false,'
r'showstringspaces=false,backgroundcolor=\color{gray},frame=single]')
print(tmp_str)
print('##\\end{lstlisting}')
print('#Code Output:')
else:
print('\n' + 80 * '*')
#print '\nCode for '+fct_name
print(tmp_str)
print('Code output:\n')
return
示例12: suppress_output
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def suppress_output():
"""Suppress printing on the current device. Force printing with `force=True`."""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
if 'force' in kwargs:
force = kwargs.pop('force')
if force:
builtin_print(*args, **kwargs)
__builtin__.print = print
import mlperf_compliance.mlperf_log as mpl
def empty_func(*args, **kwargs):
pass
mpl.transformer_print = empty_func
示例13: __call__
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def __call__(self,func):
'''
#==============================================================
# 类装饰器入口
#==============================================================
'''
orig_func[func.__name__] = func
@functools.wraps(func)
def _run_threads(*args,**kw):
p = []
for _ in range(self.num):
# 这里包装一下异常捕捉,防止异常导致的不 join
def _func():
try:
func(*args,**kw)
except Exception as e:
if log_flag._elog:
print(traceback.format_exc())
p.append(Thread(target=_func))
for i in p: i.start()
if self.join:
for i in p: i.join()
return _run_threads
示例14: show
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def show(self):
'''
#==============================================================
# 简单的打印一下当前的线程池的组数
# 以及打印每一组线程池的线程数量
#
# >>> vthread.show()
# [ MainThread ] threads group number: 3
# [ MainThread ] gqueue:0, alive threads number:6
# [ MainThread ] gqueue:1, alive threads number:5
# [ MainThread ] gqueue:2, alive threads number:2
# >>>
#==============================================================
'''
l = len(self._pool_func_num)
print("threads group number: {}".format(l))
for i,j in self._pool_func_num.items():
print("gqueue:{}, alive threads number:{}".format(i, j))
示例15: unpatch_all
# 需要导入模块: import builtins [as 别名]
# 或者: from builtins import print [as 别名]
def unpatch_all(can_be_repatch=False):
'''
#==============================================================
# 去补丁函数
# :can_be_repatch=False
# 因为设计是在每次装饰时就会默认patch一次
# 卸载后不可被重新patch的参数添加就是为了
# 可以使得在头部执行这个函数后后面的装饰都不会再patch
#==============================================================
'''
global _new_print,_org_print
builtins.print = _org_print
if not can_be_repatch:
_new_print = builtins.print
# 函数