本文整理汇总了Python中build_data.ImageReader方法的典型用法代码示例。如果您正苦于以下问题:Python build_data.ImageReader方法的具体用法?Python build_data.ImageReader怎么用?Python build_data.ImageReader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类build_data
的用法示例。
在下文中一共展示了build_data.ImageReader方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir):
"""Converts the ADE20k dataset into into tfrecord format.
Args:
dataset_split: Dataset split (e.g., train, val).
dataset_dir: Dir in which the dataset locates.
dataset_label_dir: Dir in which the annotations locates.
Raises:
RuntimeError: If loaded image and label have different shape.
"""
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg'))
random.shuffle(img_names)
seg_names = []
for f in img_names:
# get the filename without the extension
basename = os.path.basename(f).split('.')[0]
# cover its corresponding *_seg.png
seg = os.path.join(dataset_label_dir, basename+'.png')
seg_names.append(seg)
num_images = len(img_names)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_filename = img_names[i]
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = seg_names[i]
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError(
'Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, img_names[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例2: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, val).
Raises:
RuntimeError: If loaded image and label have different shape, or if the
image file with specified postfix could not be found.
"""
image_files = _get_files('image', dataset_split)
label_files = _get_files('label', dataset_split)
num_images = len(image_files)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('png', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
shard_filename = '%s-%05d-of-%05d.tfrecord' % (
dataset_split, shard_id, _NUM_SHARDS)
output_filename = os.path.join(FLAGS.output_dir, shard_filename)
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_data = tf.gfile.FastGFile(image_files[i], 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_data = b''
if label_files:
seg_data = tf.gfile.FastGFile(label_files[i], 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(
seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError(
'Shape mismatched between image and label.')
# Convert to tf example.
re_match = _IMAGE_FILENAME_RE.search(image_files[i])
if re_match is None:
raise RuntimeError(
'Invalid image filename: ' + image_files[i])
filename = os.path.basename(re_match.group(1))
example = build_data.image_seg_to_tfexample(
image_data, filename, height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例3: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir):
""" Converts the ADE20k dataset into into tfrecord format (SSTable).
Args:
dataset_split: Dataset split (e.g., train, val).
dataset_dir: Dir in which the dataset locates.
dataset_label_dir: Dir in which the annotations locates.
Raises:
RuntimeError: If loaded image and label have different shape.
"""
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg'))
random.shuffle(img_names)
seg_names = []
for f in img_names:
# get the filename without the extension
basename = os.path.basename(f).split(".")[0]
# cover its corresponding *_seg.png
seg = os.path.join(dataset_label_dir, basename+'.png')
seg_names.append(seg)
num_images = len(img_names)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_filename = img_names[i]
image_data = tf.gfile.FastGFile(image_filename, 'r').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = seg_names[i]
seg_data = tf.gfile.FastGFile(seg_filename, 'r').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, img_names[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例4: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + FLAGS.label_format)
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例5: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, val).
Raises:
RuntimeError: If loaded image and label have different shape, or if the
image file with specified postfix could not be found.
"""
image_files = _get_files('image', dataset_split)
label_files = _get_files('label', dataset_split)
num_images = len(image_files)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('png', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
shard_filename = '%s-%05d-of-%05d.tfrecord' % (
dataset_split, shard_id, _NUM_SHARDS)
output_filename = os.path.join(FLAGS.output_dir, shard_filename)
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_data = tf.gfile.FastGFile(image_files[i], 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_data = tf.gfile.FastGFile(label_files[i], 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
re_match = _IMAGE_FILENAME_RE.search(image_files[i])
if re_match is None:
raise RuntimeError('Invalid image filename: ' + image_files[i])
filename = os.path.basename(re_match.group(1))
example = build_data.image_seg_to_tfexample(
image_data, filename, height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例6: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir):
"""Converts the ADE20k dataset into into tfrecord format.
Args:
dataset_split: Dataset split (e.g., train, val).
dataset_dir: Dir in which the dataset locates.
dataset_label_dir: Dir in which the annotations locates.
Raises:
RuntimeError: If loaded image and label have different shape.
"""
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg'))
random.shuffle(img_names)
seg_names = []
for f in img_names:
# get the filename without the extension
basename = os.path.basename(f).split('.')[0]
# cover its corresponding *_seg.png
seg = os.path.join(dataset_label_dir, basename+'.png')
seg_names.append(seg)
num_images = len(img_names)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_filename = img_names[i]
image_data = tf.gfile.FastGFile(image_filename, 'r').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = seg_names[i]
seg_data = tf.gfile.FastGFile(seg_filename, 'r').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, img_names[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例7: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('jpeg', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
str(int(filenames[i])) + '.jpg')
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例8: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split, image_format, label_format):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
# will create output directory if specified directory does not exist (GS, 6/3)
if not os.path.exists(FLAGS.output_dir):
os.mkdir(FLAGS.output_dir)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + image_format)
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + label_format)
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例9: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
sys.stdout.write('Processing %s, #samples: %d\n' % (dataset, num_images))
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))
image_reader = build_data.ImageReader(FLAGS.image_format, channels=3)
label_reader = build_data.ImageReader(FLAGS.label_format, channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
image_data = tf.gfile.GFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + FLAGS.label_format)
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例10: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir):
"""Converts the ADE20k dataset into into tfrecord format.
Args:
dataset_split: Dataset split (e.g., train, val).
dataset_dir: Dir in which the dataset locates.
dataset_label_dir: Dir in which the annotations locates.
Raises:
RuntimeError: If loaded image and label have different shape.
"""
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg'))
random.shuffle(img_names)
seg_names = []
for f in img_names:
# get the filename without the extension
basename = os.path.basename(f).split('.')[0]
# cover its corresponding *_seg.png
seg = os.path.join(dataset_label_dir, basename+'.png')
seg_names.append(seg)
num_images = len(img_names)
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_filename = img_names[i]
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = seg_names[i]
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, img_names[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例11: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
image_data = tf.gfile.GFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + FLAGS.label_format)
seg_data = tf.gfile.GFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
示例12: _convert_dataset
# 需要导入模块: import build_data [as 别名]
# 或者: from build_data import ImageReader [as 别名]
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, val).
Raises:
RuntimeError: If loaded image and label have different shape, or if the
image file with specified postfix could not be found.
"""
image_files = _get_files('image', dataset_split)
label_files = _get_files('label', dataset_split)
num_images = len(image_files)
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS))
image_reader = build_data.ImageReader('png', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
shard_filename = '%s-%05d-of-%05d.tfrecord' % (
dataset_split, shard_id, _NUM_SHARDS)
output_filename = os.path.join(FLAGS.output_dir, shard_filename)
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_data = tf.gfile.FastGFile(image_files[i], 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_data = tf.gfile.FastGFile(label_files[i], 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
re_match = _IMAGE_FILENAME_RE.search(image_files[i])
if re_match is None:
raise RuntimeError('Invalid image filename: ' + image_files[i])
filename = os.path.basename(re_match.group(1))
example = build_data.image_seg_to_tfexample(
image_data, filename, height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()