当前位置: 首页>>代码示例>>Python>>正文


Python bottleneck.nansum方法代码示例

本文整理汇总了Python中bottleneck.nansum方法的典型用法代码示例。如果您正苦于以下问题:Python bottleneck.nansum方法的具体用法?Python bottleneck.nansum怎么用?Python bottleneck.nansum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bottleneck的用法示例。


在下文中一共展示了bottleneck.nansum方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _update_inhibition_radius

# 需要导入模块: import bottleneck [as 别名]
# 或者: from bottleneck import nansum [as 别名]
def _update_inhibition_radius(self):
		"""
		Sets the inhibition radius based off the average receptive field size.
		The average receptive field size is the distance of the connected
		synapses with respect to to their input column. In other words, it is
		the distance between a column and its input source averaged across all
		connected synapses. The distance used is the Euclidean distance. Refer
		to the initialization of self.syn_dist for more details.
		
		NOTE
			- This should only be called after phase 1.
			- The minimum inhibition radius is lower-bounded by 1.		
		"""
		
		self.inhibition_radius = max(bn.nansum(self.syn_dist * self.syn_c) /
			max(bn.nansum(self.syn_c), 1), 1) 
开发者ID:tehtechguy,项目名称:mHTM,代码行数:18,代码来源:region.py

示例2: _phase1

# 需要导入模块: import bottleneck [as 别名]
# 或者: from bottleneck import nansum [as 别名]
def _phase1(self):
		"""
		Execute phase 1 of the SP region. This phase is used to compute the
		overlap.
		
		Note - This should only be called once the input has been updated.
		"""
		
		# Compute the connected synapse mask
		self.syn_c = self.p >= self.syn_th
		
		# Compute the overlaps
		self.overlap[:, 1:] = self.overlap[:, :-1] # Shift
		self.overlap[:, 0] = bn.nansum(self.x[self.syn_map] * self.syn_c, 1)
		self.overlap[:, 0][self.overlap[:, 0] < self.seg_th] = 0
		self.overlap[:, 0] = self.overlap[:, 0] * self.boost 
开发者ID:tehtechguy,项目名称:mHTM,代码行数:18,代码来源:region.py

示例3: sum

# 需要导入模块: import bottleneck [as 别名]
# 或者: from bottleneck import nansum [as 别名]
def sum(self, **kwargs):
        """Return sum of non-NaN elements."""
        return self.wrap_reduced(nansum(self.to_2d_array(), axis=0), **kwargs) 
开发者ID:polakowo,项目名称:vectorbt,代码行数:5,代码来源:accessors.py

示例4: _pixel_distribution

# 需要导入模块: import bottleneck [as 别名]
# 或者: from bottleneck import nansum [as 别名]
def _pixel_distribution(dataset, tolerance=0.001, min_frames=1000):
    """Estimate the distribution of pixel intensities for each channel.

    Parameters
    ----------
    tolerance : float
        The maximum relative error in the estimates that must be
        achieved for termination.
    min_frames: int
        The minimum number of frames that must be evaluated before
        termination.

    Returns
    -------
    mean_est : array
        Mean intensities of each channel.
    var_est :
        Variances of the intensity of each channel.

    """

    # TODO: separate distributions for each plane
    sums = np.zeros(dataset.frame_shape[-1]).astype(float)
    sum_squares = np.zeros_like(sums)
    counts = np.zeros_like(sums)
    t = 0
    for frame in it.chain.from_iterable(dataset):
        for plane in frame:
            if t > 0:
                mean_est = sums / counts
                var_est = (sum_squares / counts) - (mean_est ** 2)
            if t > min_frames and np.all(
                    np.sqrt(var_est / counts) / mean_est < tolerance):
                break
            sums += np.nan_to_num(nansum(nansum(plane, axis=0), axis=0))
            sum_squares += np.nan_to_num(
                nansum(nansum(plane ** 2, axis=0), axis=0))
            counts += np.isfinite(plane).sum(axis=0).sum(axis=0)
            t += 1
    assert np.all(mean_est > 0)
    assert np.all(var_est > 0)
    return mean_est, var_est 
开发者ID:losonczylab,项目名称:sima,代码行数:44,代码来源:hmm.py


注:本文中的bottleneck.nansum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。