本文整理汇总了Python中bokeh.transform.dodge方法的典型用法代码示例。如果您正苦于以下问题:Python transform.dodge方法的具体用法?Python transform.dodge怎么用?Python transform.dodge使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.transform
的用法示例。
在下文中一共展示了transform.dodge方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_vert_range_tool
# 需要导入模块: from bokeh import transform [as 别名]
# 或者: from bokeh.transform import dodge [as 别名]
def _create_vert_range_tool(
data, min_y, max_y, plot_range, width, height, x_col, y_col, fill_map="navy"
):
"""Return vertical range too for plot."""
rng_select = figure(
plot_width=width,
plot_height=height,
y_range=(min_y - 1, max_y + 1),
toolbar_location=None,
)
x_dodge = dodge(x_col, -0.5)
rng_select.rect(
x=x_dodge,
y=y_col,
width=1.2,
height=0.8,
source=data,
fill_alpha=0.6,
fill_color=fill_map,
)
rng_select.xaxis.visible = False
rng_select.yaxis.visible = False
range_tool = RangeTool(y_range=plot_range)
range_tool.overlay.fill_color = "navy"
range_tool.overlay.fill_alpha = 0.2
rng_select.ygrid.grid_line_color = None
rng_select.xgrid.grid_line_color = None
rng_select.add_tools(range_tool)
rng_select.toolbar.active_multi = range_tool
return rng_select
# pylint: enable=too-many-arguments
示例2: get_data
# 需要导入模块: from bokeh import transform [as 别名]
# 或者: from bokeh.transform import dodge [as 别名]
def get_data(self, element, ranges, style):
style = self.style[self.cyclic_index]
if 'angle' in style and isinstance(style['angle'], (int, float)):
style['angle'] = np.deg2rad(style.get('angle', 0))
dims = element.dimensions()
coords = (1, 0) if self.invert_axes else (0, 1)
xdim, ydim, tdim = (dimension_sanitizer(dims[i].name) for i in coords+(2,))
mapping = dict(x=xdim, y=ydim, text=tdim)
data = {d: element.dimension_values(d) for d in (xdim, ydim)}
if self.xoffset is not None:
mapping['x'] = dodge(xdim, self.xoffset)
if self.yoffset is not None:
mapping['y'] = dodge(ydim, self.yoffset)
data[tdim] = [dims[2].pprint_value(v) for v in element.dimension_values(2)]
self._categorize_data(data, (xdim, ydim), element.dimensions())
cdim = element.get_dimension(self.color_index)
if cdim is None:
return data, mapping, style
cdata, cmapping = self._get_color_data(element, ranges, style, name='text_color')
if dims[2] is cdim and cdata:
# If color dim is same as text dim, rename color column
data['text_color'] = cdata[tdim]
mapping['text_color'] = dict(cmapping['text_color'], field='text_color')
else:
data.update(cdata)
mapping.update(cmapping)
return data, mapping, style
示例3: whisker_quantiles
# 需要导入模块: from bokeh import transform [as 别名]
# 或者: from bokeh.transform import dodge [as 别名]
def whisker_quantiles(data):
"""
Data is expected as a dictionary {budget : {parameter : {folder : importance }}}
"""
hyperparameters = []
for hp2folders in data.values():
for hp in hp2folders.keys():
if not hp in hyperparameters:
hyperparameters.append(hp)
# Bokeh plot
colors = itertools.cycle(d3['Category10'][10])
# Create data to plot the error-bars (whiskers)
whiskers_data = {}
for budget in data.keys():
whiskers_data.update({'base_' + str(budget): [], 'lower_' + str(budget): [], 'upper_' + str(budget): []})
# Generate whiskers data in bokeh-ColumnDataSource
for (budget, imp_dict) in data.items():
for p, imp in imp_dict.items():
mean = np.nanmean(np.array(list(imp.values())))
std = np.nanstd(np.array(list(imp.values())))
if not np.isnan(mean) and not np.isnan(std):
whiskers_data['lower_' + str(budget)].append(mean - std)
whiskers_data['upper_' + str(budget)].append(mean + std)
whiskers_data['base_' + str(budget)].append(p)
whiskers_datasource = ColumnDataSource(whiskers_data)
plot = figure(x_range=FactorRange(factors=hyperparameters, bounds='auto'),
y_range=Range1d(0, 1, bounds='auto'),
plot_width=800, plot_height=300,
)
dodgies = np.linspace(-0.25, 0.25, len(data)) if len(data) > 1 else [0] # No dodge if only one budget
# Plot
for (budget, imp_dict), d, color in zip(data.items(), dodgies, colors):
for p, imp in imp_dict.items():
for i in imp.values():
if np.isnan(i):
continue
plot.circle(x=[(p, d)], y=[i], color=color, fill_alpha=0.4,
legend="Budget %s" % str(budget) if len(data) > 1 else '')
if not 'base_' + str(budget) in whiskers_data:
continue
plot.add_layout(Whisker(source=whiskers_datasource,
base=dodge('base_' + str(budget), d, plot.x_range),
lower='lower_' + str(budget),
upper='upper_' + str(budget),
line_color=color))
plot.yaxis.axis_label = "Importance"
return plot
示例4: _create_plot
# 需要导入模块: from bokeh import transform [as 别名]
# 或者: from bokeh.transform import dodge [as 别名]
def _create_plot() -> (Figure, ColumnDataSource):
"""Utility function for creating and styling the bar plot."""
global source, aspects, stats
pos_counts, neg_counts = (
[stats.loc[(asp, pol, False), "Quantity"] for asp in aspects] for pol in POLARITIES
)
np.seterr(divide="ignore")
source = ColumnDataSource(
data={
"aspects": aspects,
"POS": pos_counts,
"NEG": neg_counts,
"log-POS": np.log2(pos_counts),
"log-NEG": np.log2(neg_counts),
}
)
np.seterr(divide="warn")
p = figure(
plot_height=145,
sizing_mode="scale_width",
x_range=aspects,
toolbar_location="right",
tools="save, tap",
)
rs = [
p.vbar(
x=dodge("aspects", -0.207, range=p.x_range),
top="log-POS",
width=0.4,
source=source,
color="limegreen",
legend=value("POS"),
name="POS",
),
p.vbar(
x=dodge("aspects", 0.207, range=p.x_range),
top="log-NEG",
width=0.4,
source=source,
color="orangered",
legend=value("NEG"),
name="NEG",
),
]
for r in rs:
p.add_tools(
HoverTool(tooltips=[("Aspect", "@aspects"), (r.name, "@" + r.name)], renderers=[r])
)
p.add_layout(
Title(text=" " * 7 + "Sentiment Count (log scale)", align="left", text_font_size="23px"),
"left",
)
p.yaxis.ticker = []
p.y_range.start = 0
p.xgrid.grid_line_color = None
p.xaxis.major_label_text_font_size = "20pt"
p.legend.label_text_font_size = "20pt"
return p, source