本文整理汇总了Python中bokeh.plotting.show方法的典型用法代码示例。如果您正苦于以下问题:Python plotting.show方法的具体用法?Python plotting.show怎么用?Python plotting.show使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.plotting
的用法示例。
在下文中一共展示了plotting.show方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: show
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def show(plot_to_show):
"""Display a plot, either interactive or static.
Parameters
----------
plot_to_show: Output of a plotting command (matplotlib axis or bokeh figure)
The plot to show
Returns
-------
None
"""
if isinstance(plot_to_show, plt.Axes):
show_static()
elif isinstance(plot_to_show, bpl.Figure):
show_interactive(plot_to_show)
else:
raise ValueError(
"The type of ``plot_to_show`` was not valid, or not understood."
)
示例2: plot_performance_vs_trials
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def plot_performance_vs_trials(results, output_directory, save_file="PerformanceVsTrials.png", plot_title=""):
try:
import matplotlib.pyplot as plt
matplotlib_imported = True
except ImportError:
matplotlib_imported = False
if not matplotlib_imported:
warnings.warn('AutoGluon summary plots cannot be created because matplotlib is not installed. Please do: "pip install matplotlib"')
return None
ordered_trials = sorted(list(results['trial_info'].keys()))
ordered_val_perfs = [results['trial_info'][trial_id][results['reward_attr']] for trial_id in ordered_trials]
x = range(1, len(ordered_trials)+1)
y = []
for i in x:
y.append(max([ordered_val_perfs[j] for j in range(i)])) # best validation performance in trials up until ith one (assuming higher = better)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set(xlabel='Completed Trials', ylabel='Best Performance', title = plot_title)
if output_directory is not None:
outputfile = os.path.join(output_directory, save_file)
fig.savefig(outputfile)
print("Plot of HPO performance saved to file: %s" % outputfile)
plt.show()
示例3: plot_bokeh_history
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def plot_bokeh_history(solvers, x, y, x_arrays, y_arrays, mins, legends,
log_scale, show):
import bokeh.plotting as bk
min_x, max_x, min_y, max_y = mins
if log_scale:
# Bokeh has a weird behaviour when using logscale with 0 entries...
# We use the difference between smallest value of second small
# to set the range of y
all_ys = np.hstack(y_arrays)
y_range_min = np.min(all_ys[all_ys != 0])
if y_range_min < 0:
raise ValueError("Cannot plot negative values on a log scale")
fig = bk.Figure(plot_height=300, y_axis_type="log",
y_range=[y_range_min, max_y])
else:
fig = bk.Figure(plot_height=300, x_range=[min_x, max_x],
y_range=[min_y, max_y])
for i, (solver, x_array, y_array, legend) in enumerate(
zip(solvers, x_arrays, y_arrays, legends)):
color = get_plot_color(i)
fig.line(x_array, y_array, line_width=3, legend=legend, color=color)
fig.xaxis.axis_label = x
fig.yaxis.axis_label = y
fig.xaxis.axis_label_text_font_size = "12pt"
fig.yaxis.axis_label_text_font_size = "12pt"
if show:
bk.show(fig)
return None
else:
return fig
示例4: _show
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def _show(f):
if _figures is None:
if _static_images:
_show_static_images(f)
else:
_process_canvas([])
_bplt.show(f)
_process_canvas([f])
else:
_figures[-1].append(f)
示例5: __exit__
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def __exit__(self, *args):
global _figures, _figsize
if len(_figures) > 1 or len(_figures[0]) > 0:
f = _bplt.gridplot(_figures, merge_tools=False)
if _static_images:
_show_static_images(f)
else:
_process_canvas([])
_bplt.show(f)
_process_canvas([item for sublist in _figures for item in sublist])
_figures = None
_figsize = self.ofigsize
示例6: show_layout
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def show_layout(ax, show=True, force_layout=False):
"""Create a layout and call bokeh show."""
if show is None:
show = rcParams["plot.bokeh.show"]
if show:
import bokeh.plotting as bkp
layout = create_layout(ax, force_layout=force_layout)
bkp.show(layout)
示例7: despline
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def despline(ax=None):
import matplotlib.pyplot as plt
ax = plt.gca() if ax is None else ax
# Hide the right and top spines
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
# Only show ticks on the left and bottom spines
ax.yaxis.set_ticks_position("left")
ax.xaxis.set_ticks_position("bottom")
示例8: some_activities
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def some_activities(constraint):
f'''
# Some Activities: {constraint}
This displays thumbnails of routes that match the query over statistics. For example,
Active Distance > 40 & Active Distance < 60
will show all activities with a distance between 40 and 60 km.
'''
'''
$contents
'''
'''
## Build Maps
Loop over activities, retrieve data, and construct maps.
'''
s = session('-v2')
maps = [map_thumbnail(100, 120, data)
for data in (activity_statistics(s, SPHERICAL_MERCATOR_X, SPHERICAL_MERCATOR_Y,
ACTIVE_DISTANCE, TOTAL_CLIMB,
activity_journal=aj)
for aj in constrained_sources(s, constraint))
if len(data[SPHERICAL_MERCATOR_X].dropna()) > 10]
print(f'Found {len(maps)} activities')
'''
## Display Maps
'''
output_notebook()
show(htile(maps, 8))
示例9: get_jupyter
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def get_jupyter(self):
output_notebook()
show(self.plot())
示例10: _do_plot_candle_html
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def _do_plot_candle_html(date, p_open, high, low, close, symbol, save):
"""
bk绘制可交互的k线图
:param date: 融时间序列交易日时间,pd.DataFrame.index对象
:param p_open: 金融时间序列开盘价格序列,np.array对象
:param high: 金融时间序列最高价格序列,np.array对象
:param low: 金融时间序列最低价格序列,np.array对象
:param close: 金融时间序列收盘价格序列,np.array对象
:param symbol: symbol str对象
:param save: 是否保存可视化结果在本地
"""
mids = (p_open + close) / 2
spans = abs(close - p_open)
inc = close > p_open
dec = p_open > close
w = 24 * 60 * 60 * 1000
t_o_o_l_s = "pan,wheel_zoom,box_zoom,reset,save"
p = bp.figure(x_axis_type="datetime", tools=t_o_o_l_s, plot_width=1280, title=symbol)
p.xaxis.major_label_orientation = pi / 4
p.grid.grid_line_alpha = 0.3
p.segment(date.to_datetime(), high, date.to_datetime(), low, color="black")
# noinspection PyUnresolvedReferences
p.rect(date.to_datetime()[inc], mids[inc], w, spans[inc], fill_color=__colorup__, line_color=__colorup__)
# noinspection PyUnresolvedReferences
p.rect(date.to_datetime()[dec], mids[dec], w, spans[dec], fill_color=__colordown__, line_color=__colordown__)
bp.show(p)
if save:
save_dir = os.path.join(K_SAVE_CACHE_HTML_ROOT, ABuDateUtil.current_str_date())
html_name = os.path.join(save_dir, symbol + ".html")
ABuFileUtil.ensure_dir(html_name)
bp.output_file(html_name, title=symbol)
示例11: plot_simple_multi_stock
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def plot_simple_multi_stock(multi_kl_pd):
"""
将多个金融时间序列收盘价格缩放到一个价格水平后,可视化价格变动
:param multi_kl_pd: 可迭代的序列,元素为金融时间序列
"""
rg_ret = ABuScalerUtil.scaler_matrix([kl_pd.close for kl_pd in multi_kl_pd])
for i, kl_pd in enumerate(multi_kl_pd):
plt.plot(kl_pd.index, rg_ret[i])
plt.show()
示例12: plot_simple_two_stock
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def plot_simple_two_stock(two_stcok_dict):
"""
将两个金融时间序列收盘价格缩放到一个价格水平后,可视化价格变动
:param two_stcok_dict: 字典形式,key将做为lable进行可视化使用,元素为金融时间序列
"""
if not isinstance(two_stcok_dict, dict) or len(two_stcok_dict) != 2:
print('two_stcok_dict type must dict! or len(two_stcok_dict) != 2')
return
label_arr = [s_name for s_name in two_stcok_dict.keys()]
x, y = ABuScalerUtil.scaler_xy(two_stcok_dict[label_arr[0]].close, two_stcok_dict[label_arr[1]].close)
plt.plot(x, label=label_arr[0])
plt.plot(y, label=label_arr[1])
plt.legend(loc=2)
plt.show()
示例13: readMatLabFig_LandmarkMap
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def readMatLabFig_LandmarkMap(LandmarkMap_fn):
LandmarkMap=loadmat(LandmarkMap_fn, squeeze_me=True, struct_as_record=False)
y=loadmat(LandmarkMap_fn)
print(sorted(LandmarkMap.keys()))
LandmarkMap_dic={} #提取.fig值
for object_idx in range(LandmarkMap['hgS_070000'].children.children.shape[0]):
# print(object_idx)
try:
X=LandmarkMap['hgS_070000'].children.children[object_idx].properties.XData #good
Y=LandmarkMap['hgS_070000'].children.children[object_idx].properties.YData
LandmarkMap_dic[object_idx]=(X,Y)
except:
pass
# print(LandmarkMap_dic)
fig= plt.figure(figsize=(130,20))
colors=['#7f7f7f','#d62728','#1f77b4','','','']
markers=['.','+','o','','','']
dotSizes=[200,3000,3000,0,0,0]
linewidths=[2,10,10,0,0,0]
i=0
for key in LandmarkMap_dic.keys():
plt.scatter(LandmarkMap_dic[key][1],LandmarkMap_dic[key][0], s=dotSizes[i],marker=markers[i], color=colors[i],linewidth=linewidths[i])
i+=1
plt.tick_params(axis='both',labelsize=80)
plt.show()
return LandmarkMap_dic
#03-read PHMI values for evaluation of AVs' on-board lidar navigation 读取PHMI值
#the PHMI value less than pow(10,-5) is scaled to show clearly------on; the PHMI value larger than pow(10,-5) is scaled to show clearly------on
#数据类型A
示例14: singleBoxplot
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def singleBoxplot(array):
import plotly.express as px
import pandas as pd
df=pd.DataFrame(array,columns=["value"])
fig = px.box(df, y="value",points="all")
# fig.show() #show in Jupyter
import plotly
plotly.offline.plot (fig) #works in spyder
#04-split curve into continuous parts based on the jumping position 使用1维卷积的方法,在曲线跳变点切分曲线
示例15: location_landmarks_network
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import show [as 别名]
def location_landmarks_network(targetPts_idx,locations,landmarks):
LMs=np.stack((landmarks[0], landmarks[1]), axis=-1)
LCs=np.stack((locations[0], locations[1]), axis=-1)
ptsMerge=np.vstack((LMs,LCs))
print("LMs shape:%s, LCs shaoe:%s, ptsMerge shape:%s"%(LMs.shape, LCs.shape,ptsMerge.shape))
targetPts_idx_adj={}
for key in targetPts_idx.keys():
targetPts_idx_adj[key+LMs.shape[0]]=targetPts_idx[key]
edges=[[(key,i) for i in targetPts_idx_adj[key]] for key in targetPts_idx_adj.keys()]
edges=flatten_lst(edges)
G=nx.Graph()
G.position={}
# G.targetPtsNum={}
i=0
for pts in ptsMerge:
G.add_node(i)
G.position[i]=(pts[1],pts[0])
# G.targetPtsNum[LM]=(len(targetPts[key]))
i+=1
G.add_edges_from(edges)
plt.figure(figsize=(130,20))
nx.draw(G,G.position,linewidths=1,edge_color='gray')
plt.show()
return G
#网络交互图表