本文整理汇总了Python中bokeh.plotting.save方法的典型用法代码示例。如果您正苦于以下问题:Python plotting.save方法的具体用法?Python plotting.save怎么用?Python plotting.save使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.plotting
的用法示例。
在下文中一共展示了plotting.save方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update_graphs
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import save [as 别名]
def update_graphs(project_code, html_path):
pd.set_option('display.width', 1800)
html_path = op.join(html_path, "{0}.html".format(project_code))
qc_path = op.dirname(op.abspath(__file__))
commands_dir = op.dirname(qc_path)
root_dir = op.dirname(commands_dir)
log_dir = op.join(root_dir, "logs")
csv_path = op.join(log_dir, project_code + ".csv")
csv = pd.read_csv(csv_path, delimiter=";")
csv.timeStamp = pd.to_datetime(csv.timeStamp)
output_file(html_path, mode="inline")
topics = {"q_": "QC",
"l_": "LINKS",
"g_": "GROUPS",
"v_": "VIEWS",
"d_": "2D",
"s_": "STYLES",
"e_": "ELEMENTS",
"m_": "PROJECT_SQM",
}
graphs = graph(csv, project_code, topics)
save(column(graphs), validate=False)
print(colorful.bold_green(f" {html_path} updated successfully."))
示例2: bokehFigure
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import save [as 别名]
def bokehFigure(**kwargs):
"""
Builds foundation for the bokeh subplots
**kwargs can include any keyword argument that would be passable to a bokeh figure().
See https://docs.bokeh.org/en/latest/docs/reference/plotting.html for a complete list.
The main argument passed is usually 'title'. If they are not defined, 'tools',
'plot_width', 'plot_height', and 'x_axis_type' are populated with default values.
"""
# default values for bokehFigures
if 'tools' not in kwargs:
kwargs['tools'] = ['pan,box_zoom,reset,save,tap']
if 'plot_width' not in kwargs:
kwargs['plot_width'] = 1250
if 'plot_height' not in kwargs:
kwargs['plot_height'] = 250
if 'x_axis_type' not in kwargs:
kwargs['x_axis_type'] = 'datetime'
# Create figure
fig = figure(**kwargs)
fig.grid.grid_line_alpha = 0.3
fig.xaxis.axis_label = 'Date'
fig.yaxis.axis_label = ''
return fig
示例3: graph
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import save [as 别名]
def graph(_csv, _project_code, graph_topics):
figures = []
graph_x_range = None
for topic in graph_topics.keys():
# data source
csv_topic = _csv.copy().filter(regex=topic)
csv_topic["timeStamp"] = _csv.timeStamp.copy()
csv_topic.set_index('timeStamp', inplace=True)
csv_topic.index = pd.to_datetime(csv_topic.index)
csv_topic.sort_index(inplace=True)
df_columns_count = csv_topic.shape[1]
df_rows_count = csv_topic.shape[0]
colors = viridis(df_columns_count)
topic_title = f"{_project_code} - RVT - {graph_topics[topic]}"
# print(topic_title)
# print(csv_topic.head())
line_opt = dict(line_width=3, alpha=0.8)
hover = HoverTool(tooltips=[("name", "@name"),
("time", "@time"),
("count", "@count"),
]
)
tools_opt = [hover, "save", "pan", "wheel_zoom", "reset"]
graph_opt = dict(width=900, x_axis_type="datetime",
toolbar_location="left", tools=tools_opt, toolbar_sticky=False,
background_fill_alpha=0, border_fill_alpha=0)
if graph_x_range:
topic_figure = figure(title=topic_title, x_range=graph_x_range, **graph_opt)
else:
topic_figure = figure(title=topic_title, **graph_opt)
graph_x_range = topic_figure.x_range
# glyphs
# print(len(cds.column_names))
for i, col_name in enumerate(csv_topic.columns):
if topic in col_name:
# print(col_name)
csv_topic["color"] = colors[i]
name_list = [col_name[2:] for i in range(df_rows_count)]
cds = ColumnDataSource(data=dict(x=csv_topic.index.values,
y=csv_topic[col_name].values,
name=name_list,
count=csv_topic[col_name].values,
time=csv_topic.index.strftime("%Y-%m-%d %H:%M:%S"),
)
)
topic_figure.line("x", "y",
color=colors[i], name="name", source=cds, legend=col_name[2:],
**line_opt
)
figures.append(style_plot(topic_figure))
return figures
示例4: update_graph
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import save [as 别名]
def update_graph(jobs_db, graph_path):
rows = []
for job in jobs_db.all():
rows.append([job.get("<project_code>"), job.get("<command>"), job.get(">start_time"), job.get("timeout")])
df = pd.DataFrame(rows, columns=["project", "command", "start", "timeout"])
df = df.sort_values(by="project", ascending=False)
df["start"] = pd.to_datetime(df["start"], format="%H:%M:%S")
df["start_txt"] = df.start.astype("str").str.extract(r"(\d+:\d+)", expand=True) + " h"
df["timeout_txt"] = df['timeout'].copy().astype('str') + " seconds"
df["timeout"] = df['timeout'].astype('timedelta64[s]')
df["end"] = pd.to_datetime(df["start"], format="%H:%M:%S") + df["timeout"]
colors = viridis(len(df["project"]))
output_file(graph_path, title="rvt_model_services_jobs", mode="inline")
cds = ColumnDataSource(data=dict(start=df["start"].values,
end=df["end"].values,
name=df["project"],
timeout=df["timeout_txt"],
start_txt=df["start_txt"],
command=df["command"],
color=colors,
)
)
hover = HoverTool(tooltips=[("project", "@name"),
("command", "@command"),
("start time:", "@start_txt"),
("timeout:", "@timeout"),
])
tools_opt = [hover, "save", "pan", "wheel_zoom", "box_zoom", "reset"]
graph_opt = dict(width=900, x_axis_type="datetime",
tools=tools_opt,
toolbar_location="right",
background_fill_alpha=0, border_fill_alpha=0)
jobs_viz = figure(title="rvt_model_service_jobs",
y_range=list(df["project"].unique()),
**graph_opt)
jobs_viz.hbar(source=cds,
y="name",
left="start",
right="end",
height=1,
color="color",
)
style_plot(jobs_viz)
save(jobs_viz)