本文整理汇总了Python中bokeh.plotting.figure方法的典型用法代码示例。如果您正苦于以下问题:Python plotting.figure方法的具体用法?Python plotting.figure怎么用?Python plotting.figure使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.plotting
的用法示例。
在下文中一共展示了plotting.figure方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def create(clz):
"""One-time creation of app's objects.
This function is called once, and is responsible for
creating all objects (plots, datasources, etc)
"""
self = clz()
n_vals = 1000
self.source = ColumnDataSource(
data=dict(
top=[],
bottom=0,
left=[],
right=[],
x= np.arange(n_vals),
values= np.random.randn(n_vals)
))
# Generate a figure container
self.stock_plot = clz.create_stock(self.source)
self.update_data()
self.children.append(self.stock_plot)
示例2: make_plot
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def make_plot(source, title):
plot = figure(x_axis_type="datetime", plot_width=800, tools="", toolbar_location=None)
plot.title.text = title
plot.quad(top='record_max_temp', bottom='record_min_temp', left='left', right='right',
color=Blues4[2], source=source, legend="Record")
plot.quad(top='average_max_temp', bottom='average_min_temp', left='left', right='right',
color=Blues4[1], source=source, legend="Average")
plot.quad(top='actual_max_temp', bottom='actual_min_temp', left='left', right='right',
color=Blues4[0], alpha=0.5, line_color="black", source=source, legend="Actual")
# fixed attributes
plot.xaxis.axis_label = None
plot.yaxis.axis_label = "Temperature (F)"
plot.axis.axis_label_text_font_style = "bold"
plot.x_range = DataRange1d(range_padding=0.0)
plot.grid.grid_line_alpha = 0.3
return plot
示例3: plot_histogram
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def plot_histogram(values, **kwargs):
"""
Convenience function. Plots a histogram of flat 1D data.
:param values:
:return:
"""
hist, edges = np.histogram(values, **kwargs)
p1 = figure(tools="save")
p1.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
fill_color="#036564", line_color="#033649")
return p1
示例4: make_plot
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.plot = figure(
x_axis_type="datetime", plot_width=600, plot_height=300,
tools='', toolbar_location=None)
self.plot.quad(
top='max_temp', bottom='min_temp', left='left', right='right',
color=Blues4[2], source=self.source, legend='Magnitude')
line = self.plot.line(
x='date', y='avg_temp', line_width=3, color=Blues4[1],
source=self.source, legend='Average')
hover_tool = HoverTool(tooltips=[
('Value', '$y'),
('Date', '@date_readable'),
], renderers=[line])
self.plot.tools.append(hover_tool)
self.plot.xaxis.axis_label = None
self.plot.yaxis.axis_label = None
self.plot.axis.axis_label_text_font_style = 'bold'
self.plot.x_range = DataRange1d(range_padding=0.0)
self.plot.grid.grid_line_alpha = 0.3
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
示例5: make_plot
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
palette = all_palettes['Set2'][6]
hover_tool = HoverTool(tooltips=[
("Value", "$y"),
("Year", "@year"),
])
self.plot = figure(
plot_width=600, plot_height=300, tools=[hover_tool],
toolbar_location=None)
columns = {
'pm10': 'PM10 Mass (µg/m³)',
'pm25_frm': 'PM2.5 FRM (µg/m³)',
'pm25_nonfrm': 'PM2.5 non FRM (µg/m³)',
'lead': 'Lead (¹/₁₀₀ µg/m³)',
}
for i, (code, label) in enumerate(columns.items()):
self.plot.line(
x='year', y=code, source=self.source, line_width=3,
line_alpha=0.6, line_color=palette[i], legend=label)
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
# [END make_plot]
示例6: make_plot
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.plot = figure(
x_axis_type="datetime", plot_width=400, plot_height=300,
tools='', toolbar_location=None)
vbar = self.plot.vbar(
x='date', top='prcp', width=1, color='#fdae61', source=self.source)
hover_tool = HoverTool(tooltips=[
('Value', '$y'),
('Date', '@date_readable'),
], renderers=[vbar])
self.plot.tools.append(hover_tool)
self.plot.xaxis.axis_label = None
self.plot.yaxis.axis_label = None
self.plot.axis.axis_label_text_font_style = 'bold'
self.plot.x_range = DataRange1d(range_padding=0.0)
self.plot.grid.grid_line_alpha = 0.3
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
示例7: app
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def app(doc):
x,y = SineWave()
source = ColumnDataSource(data=dict(x=x, y=y))
import numpy as np # see TODO below about ranges
plot = figure(plot_height=400, plot_width=400,
tools="crosshair,pan,reset,save,wheel_zoom",
x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])
plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)
def update_sinewave(sw,**kw):
x,y = sw()
source.data = dict(x=x, y=y)
# TODO couldn't figure out how to update ranges
#plot.x_range.start,plot.x_range.end=pobj.x_range
#plot.y_range.start,plot.y_range.end=pobj.y_range
parambokeh.Widgets(SineWave, mode='server', doc=doc, callback=update_sinewave)
doc.add_root(row(plot, width=800))
示例8: create_standard_figure
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def create_standard_figure(title, tooltips=None):
"""Return a styled, empty figure of predetermined height and width.
Args:
title (str): Title of the figure.
tooltips (list): List of bokeh tooltips to add to the figure.
Returns:
fig (bokeh Figure)
"""
fig = figure(plot_height=350, plot_width=700, title=title, tooltips=tooltips)
fig.title.text_font_size = "15pt"
fig.min_border_left = 50
fig.min_border_right = 50
fig.min_border_top = 20
fig.min_border_bottom = 50
fig.toolbar_location = None
return fig
示例9: run
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def run(self):
print("In thread.run")
self.p = figure(plot_height=500, tools=TOOLS, y_axis_location='left', title=self.title)
self.p.x_range.follow = "end"
self.p.xaxis.axis_label = "Timestamp"
self.p.x_range.follow_interval = 100
self.p.x_range.range_padding = 0
self.p.line(x="timestamp", y="value", color="blue", source=self.source)
self.p.circle(x="timestamp", y="value", color="red", source=self.source)
self.session = push_session(curdoc())
curdoc().add_periodic_callback(self.update, 100) #period in ms
self.session.show(column(self.p))
curdoc().title = 'Sensor'
self.session.loop_until_closed()
# def register(self, d, sourceq):
# source = ColumnDataSource(dict(d))
# self.p.line(x=d[0], y=d[1], color="orange", source=source)
# curdoc().add_periodic_callback(self.update, 100) #period in ms
示例10: visualize_sentences
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def visualize_sentences(vecs, sentences, palette="Viridis256", filename="/notebooks/embedding/sentences.png",
use_notebook=False):
tsne = TSNE(n_components=2)
tsne_results = tsne.fit_transform(vecs)
df = pd.DataFrame(columns=['x', 'y', 'sentence'])
df['x'], df['y'], df['sentence'] = tsne_results[:, 0], tsne_results[:, 1], sentences
source = ColumnDataSource(ColumnDataSource.from_df(df))
labels = LabelSet(x="x", y="y", text="sentence", y_offset=8,
text_font_size="12pt", text_color="#555555",
source=source, text_align='center')
color_mapper = LinearColorMapper(palette=palette, low=min(tsne_results[:, 1]), high=max(tsne_results[:, 1]))
plot = figure(plot_width=900, plot_height=900)
plot.scatter("x", "y", size=12, source=source, color={'field': 'y', 'transform': color_mapper}, line_color=None, fill_alpha=0.8)
plot.add_layout(labels)
if use_notebook:
output_notebook()
show(plot)
else:
export_png(plot, filename)
print("save @ " + filename)
示例11: visualize_words
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def visualize_words(words, vecs, palette="Viridis256", filename="/notebooks/embedding/words.png",
use_notebook=False):
tsne = TSNE(n_components=2)
tsne_results = tsne.fit_transform(vecs)
df = pd.DataFrame(columns=['x', 'y', 'word'])
df['x'], df['y'], df['word'] = tsne_results[:, 0], tsne_results[:, 1], list(words)
source = ColumnDataSource(ColumnDataSource.from_df(df))
labels = LabelSet(x="x", y="y", text="word", y_offset=8,
text_font_size="15pt", text_color="#555555",
source=source, text_align='center')
color_mapper = LinearColorMapper(palette=palette, low=min(tsne_results[:, 1]), high=max(tsne_results[:, 1]))
plot = figure(plot_width=900, plot_height=900)
plot.scatter("x", "y", size=12, source=source, color={'field': 'y', 'transform': color_mapper}, line_color=None,
fill_alpha=0.8)
plot.add_layout(labels)
if use_notebook:
output_notebook()
show(plot)
else:
export_png(plot, filename)
print("save @ " + filename)
示例12: climate_map
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def climate_map():
data = netCDF4.Dataset('data/Land_and_Ocean_LatLong1.nc')
t = data.variables['temperature']
image = get_slice(t, 1950, 1)
world_countries = wc.data.copy()
worldmap = pd.DataFrame.from_dict(world_countries, orient='index')
# Create your plot
p = figure(width=900, height=500, x_axis_type=None, y_axis_type=None,
x_range=[-180,180], y_range=[-90,90], toolbar_location="left")
p.image_rgba(
image=[image],
x=[-180], y=[-90],
dw=[360], dh=[180], name='image'
)
p.patches(xs=worldmap['lons'], ys=worldmap['lats'], fill_color="white", fill_alpha=0,
line_color="black", line_width=0.5)
return p
示例13: title
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def title():
# Data
year = 1850
month = 1
years = [str(x) for x in np.arange(1850, 2015, 1)]
months = [str(x) for x in np.arange(1, 13, 1)]
months_str = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
month_str = months_str[month-1]
title = figure(width=1200, height=100, x_range=(0, 1200), y_range=(0, 100), toolbar_location=None,
x_axis_type=None, y_axis_type=None, outline_line_color="#FFFFFF", tools="", min_border=0)
title.text(x=500, y=5, text=[month_str], text_font_size='36pt', text_color='black',
name="month", text_font="Georgia")
title.text(x=350, y=5, text=[str(year)], text_font_size='36pt', text_color='black',
name="year",text_font="Georgia")
return title
示例14: modify_doc
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def modify_doc(doc):
df = sea_surface_temperature.copy()
source = ColumnDataSource(data=df)
plot = figure(x_axis_type='datetime', y_range=(0, 25), y_axis_label='Temperature (Celsius)',
title="Sea Surface Temperature at 43.18, -70.43")
plot.line('time', 'temperature', source=source)
def callback(attr, old, new):
if new == 0:
data = df
else:
data = df.rolling('{0}D'.format(new)).mean()
source.data = ColumnDataSource(data=data).data
slider = Slider(start=0, end=30, value=0, step=1, title="Smoothing by N Days")
slider.on_change('value', callback)
doc.add_root(column(slider, plot))
# doc.theme = Theme(filename="theme.yaml")
示例15: show
# 需要导入模块: from bokeh import plotting [as 别名]
# 或者: from bokeh.plotting import figure [as 别名]
def show(plot_to_show):
"""Display a plot, either interactive or static.
Parameters
----------
plot_to_show: Output of a plotting command (matplotlib axis or bokeh figure)
The plot to show
Returns
-------
None
"""
if isinstance(plot_to_show, plt.Axes):
show_static()
elif isinstance(plot_to_show, bpl.Figure):
show_interactive(plot_to_show)
else:
raise ValueError(
"The type of ``plot_to_show`` was not valid, or not understood."
)