本文整理汇总了Python中bokeh.models方法的典型用法代码示例。如果您正苦于以下问题:Python bokeh.models方法的具体用法?Python bokeh.models怎么用?Python bokeh.models使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh
的用法示例。
在下文中一共展示了bokeh.models方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_xaxis_tick_format
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def set_xaxis_tick_format(self, num_format):
"""Set x-axis tick label number format.
Args:
num_format (string): the number format for the x-axis tick labels
Examples:
Decimal precision
>>> ch.set_xaxis_tick_format('0.0')
Label format: 1000 -> 1000.0
Percentage
>>> ch.set_xaxis_tick_format("0%")
Label format: 0.9748 -> 97%
0.974878234 ‘0.000%’ 97.488%
Currency:
>>> ch.set_xaxis_tick_format('$0,0.00')
Label format: 1000.234 -> $1,000.23
Auto formatting:
>>> ch.set_xaxis_tick_format('0 a')
Label format: 10000 -> 10 K
Additional documentation: http://numbrojs.com/old-format.html
Returns:
Current chart object
"""
self._chart.figure.xaxis[0].formatter = (
bokeh.models.NumeralTickFormatter(format=num_format)
)
return self._chart
示例2: set_yaxis_tick_format
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def set_yaxis_tick_format(self, num_format):
"""Set y-axis tick label number format.
Args:
num_format (string): the number format for the y-axis tick labels
Examples:
Decimal precision
>>> ch.set_yaxis_tick_format('0.0')
Label format: 1000 -> 1000.0
Percentage
>>> ch.set_yaxis_tick_format("0%")
Label format: 0.9748 -> 97%
0.974878234 ‘0.000%’ 97.488%
Currency:
>>> ch.set_yaxis_tick_format('$0,0.00')
Label format: 1000.234 -> $1,000.23
Auto formatting:
>>> ch.set_xaxis_tick_format('0a')
Label format: 10000 -> 10 K
Additional documentation: http://numbrojs.com/old-format.html
Returns:
Current chart object
"""
self._chart.figure.yaxis[self._y_axis_index].formatter = (
bokeh.models.NumeralTickFormatter(format=num_format))
return self._chart
示例3: compute_plot_size
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def compute_plot_size(plot):
"""
Computes the size of bokeh models that make up a layout such as
figures, rows, columns, widgetboxes and Plot.
"""
if isinstance(plot, GridBox):
ndmapping = NdMapping({(x, y): fig for fig, y, x in plot.children}, kdims=['x', 'y'])
cols = ndmapping.groupby('x')
rows = ndmapping.groupby('y')
width = sum([max([compute_plot_size(f)[0] for f in col]) for col in cols])
height = sum([max([compute_plot_size(f)[1] for f in row]) for row in rows])
return width, height
elif isinstance(plot, (Div, ToolbarBox)):
# Cannot compute size for Div or ToolbarBox
return 0, 0
elif isinstance(plot, (Row, Column, WidgetBox, Tabs)):
if not plot.children: return 0, 0
if isinstance(plot, Row) or (isinstance(plot, ToolbarBox) and plot.toolbar_location not in ['right', 'left']):
w_agg, h_agg = (np.sum, np.max)
elif isinstance(plot, Tabs):
w_agg, h_agg = (np.max, np.max)
else:
w_agg, h_agg = (np.max, np.sum)
widths, heights = zip(*[compute_plot_size(child) for child in plot.children])
return w_agg(widths), h_agg(heights)
elif isinstance(plot, (Figure, Chart)):
if plot.plot_width:
width = plot.plot_width
else:
width = plot.frame_width + plot.min_border_right + plot.min_border_left
if plot.plot_height:
height = plot.plot_height
else:
height = plot.frame_height + plot.min_border_bottom + plot.min_border_top
return width, height
elif isinstance(plot, (Plot, DataTable, Spacer)):
return plot.width, plot.height
else:
return 0, 0
示例4: recursive_model_update
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def recursive_model_update(model, props):
"""
Recursively updates attributes on a model including other
models. If the type of the new model matches the old model
properties are simply updated, otherwise the model is replaced.
"""
updates = {}
valid_properties = model.properties_with_values()
for k, v in props.items():
if isinstance(v, Model):
nested_model = getattr(model, k)
if type(v) is type(nested_model):
nested_props = v.properties_with_values(include_defaults=False)
recursive_model_update(nested_model, nested_props)
else:
try:
setattr(model, k, v)
except Exception as e:
if isinstance(v, dict) and 'value' in v:
setattr(model, k, v['value'])
else:
raise e
elif k in valid_properties and v != valid_properties[k]:
if isinstance(v, dict) and 'value' in v:
v = v['value']
updates[k] = v
model.update(**updates)
示例5: model_changed
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def model_changed(self, model):
"""
Determines if the bokeh model was just changed on the frontend.
Useful to suppress boomeranging events, e.g. when the frontend
just sent an update to the x_range this should not trigger an
update on the backend.
"""
callbacks = [cb for cbs in self.traverse(lambda x: x.callbacks)
for cb in cbs]
stream_metadata = [stream._metadata for cb in callbacks
for stream in cb.streams if stream._metadata]
return any(md['id'] == model.ref['id'] for models in stream_metadata
for md in models.values())
示例6: render_mimebundle
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def render_mimebundle(model, doc, comm, manager=None, location=None):
"""
Displays bokeh output inside a notebook using the PyViz display
and comms machinery.
"""
if not isinstance(model, LayoutDOM):
raise ValueError('Can only render bokeh LayoutDOM models')
add_to_doc(model, doc, True)
if manager is not None:
doc.add_root(manager)
if location is not None:
loc = location._get_model(doc, model, model, comm)
doc.add_root(loc)
return render_model(model, comm)
示例7: _add_backgroundtile
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def _add_backgroundtile(
p, tile_provider, tile_provider_url, tile_attribution, tile_alpha
):
"""Add a background tile to the plot. Either uses predefined Tiles from Bokeh
(parameter: tile_provider) or user passed a tile_provider_url of the form
'<url>/{Z}/{X}/{Y}*.png' or '<url>/{Z}/{Y}/{X}*.png'."""
from bokeh.models import WMTSTileSource
if not tile_provider_url is None:
if (
"/{Z}/{X}/{Y}" not in tile_provider_url
and "/{Z}/{Y}/{X}" not in tile_provider_url
):
raise ValueError(
"<tile_provider_url> has to be of the form '<url>/{Z}/{X}/{Y}*.png' or <url>/{Z}/{Y}/{X}*.png'."
)
if not isinstance(tile_attribution, str):
raise ValueError("<tile_attribution> has to be a string.")
t = p.add_tile(
WMTSTileSource(url=tile_provider_url, attribution=tile_attribution)
)
t.alpha = tile_alpha
elif not tile_provider is None:
if not isinstance(tile_provider, str):
raise ValueError(
f"<tile_provider> only accepts the values: {TILE_PROVIDERS}"
)
elif _get_background_tile(tile_provider) != False:
t = p.add_tile(_get_background_tile(tile_provider))
else:
raise ValueError(
f"<tile_provider> only accepts the values: {TILE_PROVIDERS}"
)
t.alpha = tile_alpha
return p
示例8: get_tick_formatter
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def get_tick_formatter(formatter_arg):
if issubclass(formatter_arg.__class__, TickFormatter):
return formatter_arg
elif isinstance(formatter_arg, str):
return NumeralTickFormatter(format=formatter_arg)
else:
raise ValueError(
"<colorbar_tick_format> parameter only accepts a string or a objects of bokeh.models.formatters."
)
示例9: plot_summary_of_models
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def plot_summary_of_models(results, output_directory, save_file='SummaryOfModels.html', plot_title="Models produced during fit()"):
""" Plot dynamic scatterplot summary of each model encountered during fit(), based on the returned Results object.
"""
num_trials = len(results['trial_info'])
attr_color = None
attr_size = None
datadict = {'trial_id': sorted(results['trial_info'].keys())}
datadict['performance'] = [results['trial_info'][trial_id][results['reward_attr']] for trial_id in datadict['trial_id']]
datadict['hyperparameters'] = [_formatDict(results['trial_info'][trial_id]['config']) for trial_id in datadict['trial_id']]
hidden_keys = []
# Determine x-axis attribute:
if 'latency' in results['metadata']:
datadict['latency'] = [results['trial_info'][trial_id]['metadata']['latency'] for trial_id in datadict['trial_id']]
attr_x = 'latency'
else:
attr_x = list(results['best_config'].keys())[0]
datadict[attr_x] = [results['trial_info'][trial_id]['config'][attr_x] for trial_id in datadict['trial_id']]
hidden_keys.append(attr_x)
# Determine size attribute:
if 'memory' in results['metadata']:
datadict['memory'] = [results['trial_info'][trial_id]['metadata']['memory'] for trial_id in datadict['trial_id']]
attr_size = 'memory'
# Determine color attribute:
if 'training_loss' in results:
datadict['training_loss'] = [results['trial_info'][trial_id]['training_loss'] for trial_id in datadict['trial_id']]
attr_color = 'training_loss'
save_path = os.path.join(output_directory, save_file) if output_directory else None
mousover_plot(datadict, attr_x=attr_x, attr_y='performance', attr_color=attr_color,
attr_size=attr_size, save_file=save_path, plot_title=plot_title, hidden_keys=hidden_keys)
if save_path is not None:
print("Plot summary of models saved to file: %s" % save_file)
示例10: _init_tools
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def _init_tools(self, element, callbacks=[]):
"""
Processes the list of tools to be supplied to the plot.
"""
tooltips, hover_opts = self._hover_opts(element)
tooltips = [(ttp.pprint_label, '@{%s}' % util.dimension_sanitizer(ttp.name))
if isinstance(ttp, Dimension) else ttp for ttp in tooltips]
if not tooltips: tooltips = None
callbacks = callbacks+self.callbacks
cb_tools, tool_names = [], []
hover = False
for cb in callbacks:
for handle in cb.models+cb.extra_models:
if handle and handle in TOOLS_MAP:
tool_names.append(handle)
if handle == 'hover':
tool = tools.HoverTool(
tooltips=tooltips, tags=['hv_created'],
**hover_opts)
hover = tool
else:
tool = TOOLS_MAP[handle]()
cb_tools.append(tool)
self.handles[handle] = tool
tool_list = [
t for t in cb_tools + self.default_tools + self.tools
if t not in tool_names]
copied_tools = []
for tool in tool_list:
if isinstance(tool, tools.Tool):
properties = tool.properties_with_values(include_defaults=False)
tool = type(tool)(**properties)
copied_tools.append(tool)
hover_tools = [t for t in copied_tools if isinstance(t, tools.HoverTool)]
if 'hover' in copied_tools:
hover = tools.HoverTool(tooltips=tooltips, tags=['hv_created'], **hover_opts)
copied_tools[copied_tools.index('hover')] = hover
elif any(hover_tools):
hover = hover_tools[0]
if hover:
self.handles['hover'] = hover
return copied_tools
示例11: _initialize_rangetool
# 需要导入模块: import bokeh [as 别名]
# 或者: from bokeh import models [as 别名]
def _initialize_rangetool(p, x_axis_type, source):
"""
Initializes the range tool chart and slider.
Parameters
----------
p : Bokeh.plotting.figure
Bokeh plot that the figure tool is going to supplement.
x_axis_type : str
Type of the xaxis (ex. datetime)
source : Bokeh.models.sources
Data
Returns
-------
Bokeh.plotting.figure
"""
max_y_range = 0
# Initialize range tool plot
p_rangetool = figure(
title="Drag the box to change the range above.",
plot_height=130,
plot_width=p.plot_width,
y_range=p.y_range,
x_axis_type=x_axis_type,
y_axis_type=None,
tools="",
toolbar_location=None,
)
# Need to explicitly set the initial range of the plot for the range tool.
start_index = int(0.75 * len(source["__x__values"]))
p.x_range = Range1d(source["__x__values"][start_index], source["__x__values"][-1])
range_tool = RangeTool(x_range=p.x_range)
range_tool.overlay.fill_color = "navy"
range_tool.overlay.fill_alpha = 0.2
p_rangetool.ygrid.grid_line_color = None
p_rangetool.add_tools(range_tool)
p_rangetool.toolbar.active_multi = range_tool
return p_rangetool