本文整理汇总了Python中bokeh.models.Span方法的典型用法代码示例。如果您正苦于以下问题:Python models.Span方法的具体用法?Python models.Span怎么用?Python models.Span使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.models
的用法示例。
在下文中一共展示了models.Span方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: vlines
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def vlines(x, color='gray', style='dashed', thickness=1, hold=False):
"""Draw vertical lines on a plot.
:param x: x location of lines
:param color: line color (see `Bokeh colors`_)
:param style: line style ('solid', 'dashed', 'dotted', 'dotdash', 'dashdot')
:param thickness: line width in pixels
:param hold: if set to True, output is not plotted immediately, but combined with the next plot
>>> import arlpy.plot
>>> arlpy.plot.plot([0, 20], [0, 10], hold=True)
>>> arlpy.plot.vlines([7, 12])
"""
global _figure
if _figure is None:
return
x = _np.array(x, ndmin=1, dtype=_np.float, copy=False)
for j in range(x.size):
_figure.add_layout(_bmodels.Span(location=x[j], dimension='height', line_color=color, line_dash=style, line_width=thickness))
if not hold and not _hold:
_show(_figure)
_figure = None
示例2: hlines
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def hlines(y, color='gray', style='dashed', thickness=1, hold=False):
"""Draw horizontal lines on a plot.
:param y: y location of lines
:param color: line color (see `Bokeh colors`_)
:param style: line style ('solid', 'dashed', 'dotted', 'dotdash', 'dashdot')
:param thickness: line width in pixels
:param hold: if set to True, output is not plotted immediately, but combined with the next plot
>>> import arlpy.plot
>>> arlpy.plot.plot([0, 20], [0, 10], hold=True)
>>> arlpy.plot.hlines(3, color='red', style='dotted')
"""
global _figure
if _figure is None:
return
y = _np.array(y, ndmin=1, dtype=_np.float, copy=False)
for j in range(y.size):
_figure.add_layout(_bmodels.Span(location=y[j], dimension='width', line_color=color, line_dash=style, line_width=thickness))
if not hold and not _hold:
_show(_figure)
_figure = None
示例3: _plot_hlines
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def _plot_hlines(self, obj):
hlines = obj.plotinfo._get('plothlines', [])
if not hlines:
hlines = obj.plotinfo._get('plotyhlines', [])
# Horizontal Lines
hline_color = convert_color(self._scheme.hlinescolor)
for hline in hlines:
span = Span(location=hline,
dimension='width',
line_color=hline_color,
line_dash=convert_linestyle(self._scheme.hlinesstyle),
line_width=self._scheme.hlineswidth)
self.figure.renderers.append(span)
示例4: _init_glyph
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def _init_glyph(self, plot, mapping, properties):
"""
Returns a Bokeh glyph object.
"""
box = Span(level=properties.get('level', 'glyph'), **mapping)
plot.renderers.append(box)
return None, box
示例5: bokeh_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def bokeh_plot(self):
if self._bokeh_plot is None:
spinflag = False
if len(self.dos) == 2:
spinflag = True
if spinflag:
source = bkp.ColumnDataSource(data=dict(
en = self.energy,
up = self.dos[0],
down = -self.dos[1],
))
else:
source = bkp.ColumnDataSource(data=dict(
en = self.energy,
dos = self.dos[0],
))
p = bkp.figure(width=500, height=300,
x_range=(-6, 6),
tools=['pan', 'box_zoom', 'hover', 'reset', 'save', 'help'])
p.title.text = 'Density of States'
p.title.align = 'center'
p.title.text_font_size = "15pt"
p.xaxis.axis_label = u'E \u2212 E_Fermi (eV)'
p.xaxis.axis_label_text_font_size = '14pt'
p.xaxis.major_label_text_font_size = '12pt'
p.yaxis.axis_label = '# of states (arb. units)'
p.yaxis.axis_label_text_font_size = '14pt'
p.yaxis.major_label_text_font_size = '12pt'
vline = Span(location=0, dimension='height',
line_color='gray', line_width=1.5,
line_dash='dashed')
p.renderers.extend([vline])
if spinflag:
p.line('en', 'up', line_width = 2, line_color = 'blue',
legend="Spin Up", source=source)
p.line('en', 'down', line_width = 2, line_color = 'orange',
legend="Spin Down", source=source)
else:
p.line('en', 'dos', line_width = 2, line_color = 'blue',
legend='total', source=source)
p.legend.click_policy = "hide"
self._bokeh_plot = p
return self._bokeh_plot
示例6: plotRSI
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def plotRSI(p, df, plotwidth=800, upcolor='green',
downcolor='red', yloc='right', limits=(30, 70)):
# create y axis for rsi
p.extra_y_ranges = {"rsi": Range1d(start=0, end=100)}
p.add_layout(LinearAxis(y_range_name="rsi"), yloc)
p.add_layout(Span(location=limits[0],
dimension='width',
line_color=upcolor,
line_dash='dashed',
line_width=2,
y_range_name="rsi"))
p.add_layout(Span(location=limits[1],
dimension='width',
line_color=downcolor,
line_dash='dashed',
line_width=2,
y_range_name="rsi"))
candleWidth = (df.iloc[2]['date'].timestamp() -
df.iloc[1]['date'].timestamp()) * plotwidth
# plot green bars
inc = df.rsi >= 50
p.vbar(x=df.date[inc],
width=candleWidth,
top=df.rsi[inc],
bottom=50,
fill_color=upcolor,
line_color=upcolor,
alpha=0.5,
y_range_name="rsi")
# Plot red bars
dec = df.rsi <= 50
p.vbar(x=df.date[dec],
width=candleWidth,
top=50,
bottom=df.rsi[dec],
fill_color=downcolor,
line_color=downcolor,
alpha=0.5,
y_range_name="rsi")
示例7: trial_viewer
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def trial_viewer(step_data, roll_type = "ewm", roll_span=100, bar=False):
"""
Args:
step_data:
grad_data:
"""
step_data.loc[step_data['response'] == 'L','response'] = 0
step_data.loc[step_data['response'] == 'R','response'] = 1
step_data.loc[step_data['target'] == 'L','target'] = 0
step_data.loc[step_data['target'] == 'R','target'] = 1
palette = [cc.rainbow[i] for i in range(len(step_data['subject'].unique()))]
palette = [cc.rainbow[i*15] for i in range(5)]
mice = sorted(step_data['subject'].unique())
current_step = step_data.groupby('subject').last().reset_index()
current_step = current_step[['subject','step']]
plots = []
p = figure(x_range=step_data['subject'].unique(),title='Subject Steps',
plot_height=200)
p.xaxis.major_label_orientation = np.pi / 2
p.vbar(x=current_step['subject'], top=current_step['step'], width=0.9)
plots.append(p)
for i, (mus, group) in enumerate(step_data.groupby('subject')):
if roll_type == "ewm":
meancx = group['correct'].ewm(span=roll_span,ignore_na=True).mean()
else:
meancx = group['correct'].rolling(window=roll_span).mean()
title_str = "{}, step: {}".format(mus, group.step.iloc[-1])
p = figure(plot_height=100,y_range=(0,1),title=title_str)
if bar:
hline = Span(location=bar, dimension="width", line_color='red', line_width=1)
p.renderers.append(hline)
p.line(group['trial_num'], meancx, color=palette[group['step'].iloc[0]-1])
plots.append(p)
grid = gridplot(plots, ncols=1)
show(grid)
示例8: show
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import Span [as 别名]
def show(self, title='', xlabel='', ylabel='', xaxis=True, yaxis=True, xticks=True, yticks=True, legend=True, grid=True, **kwargs):
# self.figure.add_tools(*[HoverTool(
# tooltips=[('x', '@x{%F}'), ('y', '@y')],
# formatters={'x': 'datetime'},
# mode='vline'
# ) for _ in data])
self.figure.outline_line_color = None
# vline = Span(location=0, dimension='height', line_color='red', line_width=3)
hline = Span(location=0, dimension='width', line_color='black', line_width=1)
self.figure.renderers.append(hline)
if xlabel:
self.figure.xaxis.axis_label = kwargs.get('xlabel')
if ylabel:
self.figure.yaxis.axis_label = kwargs.get('ylabel')
if title:
self.figure.title.text = kwargs.get('title')
if legend:
self.figure.legend.location = (self.width + 10, self.height + 10)
legend = Legend(items=self.legend, location=(10, 100))
legend.items = self.legend
legend.click_policy = "mute"
self.figure.add_layout(legend, 'right')
else:
self.figure.legend.location = None
if not grid:
self.figure.xgrid.grid_line_color = None
self.figure.ygrid.grid_line_color = None
# FIXME
if not yaxis:
for ax in self.figure.yaxis:
ax.axis_line_color = 'white'
if not xaxis:
for ax in self.figure.xaxis:
ax.axis_line_color = 'white'
# Turn off labels:
# self.figure.xaxis.major_label_text_font_size = '0pt'
show(self.figure)
return self.figure