本文整理汇总了Python中bokeh.models.HoverTool方法的典型用法代码示例。如果您正苦于以下问题:Python models.HoverTool方法的具体用法?Python models.HoverTool怎么用?Python models.HoverTool使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.models
的用法示例。
在下文中一共展示了models.HoverTool方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.plot = figure(
x_axis_type="datetime", plot_width=600, plot_height=300,
tools='', toolbar_location=None)
self.plot.quad(
top='max_temp', bottom='min_temp', left='left', right='right',
color=Blues4[2], source=self.source, legend='Magnitude')
line = self.plot.line(
x='date', y='avg_temp', line_width=3, color=Blues4[1],
source=self.source, legend='Average')
hover_tool = HoverTool(tooltips=[
('Value', '$y'),
('Date', '@date_readable'),
], renderers=[line])
self.plot.tools.append(hover_tool)
self.plot.xaxis.axis_label = None
self.plot.yaxis.axis_label = None
self.plot.axis.axis_label_text_font_style = 'bold'
self.plot.x_range = DataRange1d(range_padding=0.0)
self.plot.grid.grid_line_alpha = 0.3
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
示例2: make_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
palette = all_palettes['Set2'][6]
hover_tool = HoverTool(tooltips=[
("Value", "$y"),
("Year", "@year"),
])
self.plot = figure(
plot_width=600, plot_height=300, tools=[hover_tool],
toolbar_location=None)
columns = {
'pm10': 'PM10 Mass (µg/m³)',
'pm25_frm': 'PM2.5 FRM (µg/m³)',
'pm25_nonfrm': 'PM2.5 non FRM (µg/m³)',
'lead': 'Lead (¹/₁₀₀ µg/m³)',
}
for i, (code, label) in enumerate(columns.items()):
self.plot.line(
x='year', y=code, source=self.source, line_width=3,
line_alpha=0.6, line_color=palette[i], legend=label)
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
# [END make_plot]
示例3: make_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.plot = figure(
x_axis_type="datetime", plot_width=400, plot_height=300,
tools='', toolbar_location=None)
vbar = self.plot.vbar(
x='date', top='prcp', width=1, color='#fdae61', source=self.source)
hover_tool = HoverTool(tooltips=[
('Value', '$y'),
('Date', '@date_readable'),
], renderers=[vbar])
self.plot.tools.append(hover_tool)
self.plot.xaxis.axis_label = None
self.plot.yaxis.axis_label = None
self.plot.axis.axis_label_text_font_style = 'bold'
self.plot.x_range = DataRange1d(range_padding=0.0)
self.plot.grid.grid_line_alpha = 0.3
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
示例4: __init__
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def __init__(self, strategy: bt.Strategy, cds: ColumnDataSource, hoverc: HoverContainer, start, end, scheme, master, plotorder, is_multidata):
self._strategy = strategy
self._cds: ColumnDataSource = cds
self._scheme = scheme
self._start = start
self._end = end
self.figure: figure = None
self._hover_line_set = False
self._hover: Optional[HoverTool] = None
self._hoverc = hoverc
self._coloridx = collections.defaultdict(lambda: -1)
self.master = master
self.plottab = None
self.plotorder = plotorder
self.datas = [] # list of all datas that have been plotted to this figure
self._is_multidata = is_multidata
self._tradingdomain = None
self._init_figure()
示例5: createHoverTool
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def createHoverTool():
"""
Helper function to create family hover preview
"""
hover = HoverTool(
tooltips="""
<div>
<div>
<img src="./clusters/@famnum.png" style="height: 100px; width: 500px;
vertical-align: middle;" />
<span style="font-size: 9px; font-family: Helvetica;">Cluster ID: </span>
<span style="font-size: 12px; font-family: Helvetica;">@famnum</span>
</div>
</div>
""", names=["patch"])
return hover
示例6: location_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def location_plot(title, colors):
output_file(title+".html")
location_source = ColumnDataSource(
data={
"x": whisky[" Latitude"],
"y": whisky[" Longitude"],
"colors": colors,
"regions": whisky.Region,
"distilleries": whisky.Distillery
}
)
fig = figure(title = title,
x_axis_location = "above", tools="resize, hover, save")
fig.plot_width = 400
fig.plot_height = 500
fig.circle("x", "y", 10, 10, size=9, source=location_source,
color='colors', line_color = None)
fig.xaxis.major_label_orientation = np.pi / 3
hover = fig.select(dict(type = HoverTool))
hover.tooltips = {
"Distillery": "@distilleries",
"Location": "(@x, @y)"
}
show(fig)
示例7: _add_hover_tool
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def _add_hover_tool(plot, point_glyph, df):
top_cols = ["model", "name", "value"]
optional_cols = ["model_class", "conf_int_lower", "conf_int_upper"]
for col in optional_cols:
if len(df[col].unique()) > 1:
top_cols.append(col)
tooltips = [(col, "@" + col) for col in top_cols]
hover = HoverTool(renderers=[point_glyph], tooltips=tooltips)
plot.tools.append(hover)
示例8: apply_hovertips
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def apply_hovertips(self, figures: List['FigureEnvelope']) -> None:
"""Add hovers to to all figures from the figures list"""
for f in figures:
for t in f.figure.tools:
if not isinstance(t, HoverTool):
continue
self._apply_to_figure(f, t)
break
示例9: create
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def create(self):
self.source = self.update_source()
p = figure(plot_width=400, plot_height=400,
title="Harvest Plot", x_axis_type='datetime',
tools='pan, wheel_zoom, box_zoom, reset, resize, save, hover')
p.line(x="timestamp", y="relevant_pages", color=GREEN, line_width=0.2,
legend="relevant", source=self.source)
p.scatter(x="timestamp", y="relevant_pages", fill_alpha=0.6,
color=GREEN, source=self.source)
p.line(x="timestamp", y="downloaded_pages", color=DARK_GRAY, line_width=0.2,
legend="downloaded", source=self.source)
p.scatter(x="timestamp", y="downloaded_pages", fill_alpha=0.6,
color=DARK_GRAY, source=self.source)
hover = p.select(dict(type=HoverTool))
hover.tooltips = OrderedDict([
("harvest_rate", "@harvest_rate"),
])
p.legend.orientation = "top_left"
script, div = components(p)
return (script, div)
示例10: test_hover_tool_instance_renderer_association
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def test_hover_tool_instance_renderer_association(self):
tooltips = [("index", "$index")]
hover = HoverTool(tooltips=tooltips)
opts = dict(tools=[hover])
overlay = Curve(np.random.rand(10,2)).opts(plot=opts) * Points(np.random.rand(10,2))
plot = bokeh_renderer.get_plot(overlay)
curve_plot = plot.subplots[('Curve', 'I')]
self.assertEqual(len(curve_plot.handles['hover'].renderers), 1)
self.assertIn(curve_plot.handles['glyph_renderer'], curve_plot.handles['hover'].renderers)
self.assertEqual(plot.handles['hover'].tooltips, tooltips)
示例11: test_heatmap_custom_string_tooltip_hover
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def test_heatmap_custom_string_tooltip_hover(self):
tooltips = "<div><h1>Test</h1></div>"
custom_hover = HoverTool(tooltips=tooltips)
hm = HeatMap([(1,1,1), (2,2,0)], kdims=['x with space', 'y with $pecial symbol'])
hm = hm.options(tools=[custom_hover])
plot = bokeh_renderer.get_plot(hm)
hover = plot.handles['hover']
self.assertEqual(hover.tooltips, tooltips)
self.assertEqual(hover.renderers, [plot.handles['glyph_renderer']])
示例12: plot_bokeh
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def plot_bokeh(df,sublist,filename):
lenlist=[0]
df_sub = df[df['cuisine']==sublist[0]]
lenlist.append(df_sub.shape[0])
for cuisine in sublist[1:]:
temp = df[df['cuisine']==cuisine]
df_sub = pd.concat([df_sub, temp],axis=0,ignore_index=True)
lenlist.append(df_sub.shape[0])
df_X = df_sub.drop(['cuisine','recipeName'],axis=1)
print df_X.shape, lenlist
dist = squareform(pdist(df_X, metric='cosine'))
tsne = TSNE(metric='precomputed').fit_transform(dist)
#cannot use seaborn palette for bokeh
palette =['red','green','blue','yellow']
colors =[]
for i in range(len(sublist)):
for j in range(lenlist[i+1]-lenlist[i]):
colors.append(palette[i])
#plot with boken
output_file(filename)
source = ColumnDataSource(
data=dict(x=tsne[:,0],y=tsne[:,1],
cuisine = df_sub['cuisine'],
recipe = df_sub['recipeName']))
hover = HoverTool(tooltips=[
("cuisine", "@cuisine"),
("recipe", "@recipe")])
p = figure(plot_width=1000, plot_height=1000, tools=[hover],
title="flavor clustering")
p.circle('x', 'y', size=10, source=source,fill_color=colors)
show(p)
示例13: getHTML
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def getHTML(self, params):
state = params['state']
if state == 'all':
data = self.data
else:
data = self.data[self.data['state'] == state]
TOOLS = "pan,wheel_zoom,box_zoom,reset,hover,previewsave"
try:
fig = plotting.patches(
data['lons'], data['lats'], fill_color=data['color'], fill_alpha=0.7, tools=TOOLS,
line_color="white", line_width=0.5, title=state.upper() + " Unemployment 2009"
)
except Exception:
fig = plotting.figure(title=state.upper() + " Unemployment 2009", tools=TOOLS)
fig.patches(
data['lons'], data['lats'], fill_color=data['color'],
fill_alpha=0.7, line_color="white", line_width=0.5
)
hover = fig.select(dict(type=HoverTool))
hover.tooltips = OrderedDict([
("index", "$index")
])
script, div = components(fig, CDN)
html = "%s\n%s" % (script, div)
return html
示例14: make_alignment_figure
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def make_alignment_figure(src, tgt, alignment, title="Attention Model", toolbar_location='right', plot_width=800, plot_height=800):
alignment = alignment[:, ::-1]
# tgt = list(reversed(tgt))
src = ["%i %s" % (num, x) for num, x in enumerate(src)]
tgt = ["%s %i" % (x, num) for num, x in reversed(list(enumerate(tgt)))]
xname = []
yname = []
color = []
alpha = []
count = []
for i, n1 in enumerate(src):
for j, n2 in enumerate(tgt):
xname.append(n1)
yname.append(n2)
alpha.append(alignment[i, j])
color.append('black')
count.append(alignment[i, j])
# for x, y, a in zip(xname, yname, alpha):
# print(x, y, a)
source = ColumnDataSource(
data=dict(
xname=xname,
yname=yname,
colors=color,
alphas=alpha,
count=count,
)
)
# create a new figure
p = figure(title=title,
x_axis_location="above", tools="hover", toolbar_location=toolbar_location,
x_range=src, y_range=tgt,
plot_width=plot_width, plot_height=plot_height)
p.rect('xname', 'yname', 0.9, 0.9, source=source,
color='colors', alpha='alphas', line_color=None)
p.grid.grid_line_color = None
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_text_font_size = "10pt"
p.axis.major_label_standoff = 0
p.xaxis.major_label_orientation = np.pi / 3
hover = p.select(dict(type=HoverTool))
hover.tooltips = [
('tgt/src', '@yname, @xname'),
('attn', '@count'),
]
return p
示例15: plot_detection_history
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import HoverTool [as 别名]
def plot_detection_history():
# Rectangle grid with detection history
cols = np.shape(audio.predictions)[1]
plt = figure(plot_width=WIDTHS[0], plot_height=HEIGHTS[1],
toolbar_location=None, tools="hover",
x_range=[-cols, 0], y_range=labels[::-1])
plt.rect(x='x', y='y', width=0.95, height=0.8, color='color', source=HISTORY)
# X ticks
plt.xaxis[0].ticker = FixedTicker(ticks=np.arange(-cols, 1, 1).tolist())
plt.xaxis[0].formatter = FuncTickFormatter(code="""
return (tick * {} / 1000).toFixed(1) + " s"
""".format(PREDICTION_STEP_IN_MS))
plt.xaxis.major_tick_line_color = GRID_COLOR
plt.xaxis.major_label_text_font_size = '7pt'
plt.xaxis.major_label_text_font = TEXT_FONT
plt.xaxis.major_label_text_color = TEXT_COLOR
# X axis
plt.xaxis.axis_line_color = None
# Y ticks
plt.yaxis.major_tick_line_color = None
plt.yaxis.major_label_text_font_size = '7pt'
plt.yaxis.major_label_text_font = TEXT_FONT
plt.yaxis.major_label_text_color = TEXT_COLOR
# Y axis
plt.yaxis.axis_line_color = GRID_COLOR
# Grid
plt.ygrid.grid_line_color = None
plt.xgrid.grid_line_color = None
# Plot fill/border
plt.background_fill_color = GRID_COLOR
plt.outline_line_color = GRID_COLOR
plt.min_border = 10
# Plot title
plt.title.text = 'Detection history:'
plt.title.align = 'left'
plt.title.text_color = TEXT_COLOR
plt.title.text_font = TEXT_FONT
plt.title.text_font_size = '9pt'
plt.title.text_font_style = 'normal'
# Hover tools
hover = plt.select(dict(type=HoverTool))
hover.tooltips = [
("Event", "@label"),
('Probability', '@pretty_value'),
]
return plt