本文整理汇总了Python中bokeh.models.DatetimeTickFormatter方法的典型用法代码示例。如果您正苦于以下问题:Python models.DatetimeTickFormatter方法的具体用法?Python models.DatetimeTickFormatter怎么用?Python models.DatetimeTickFormatter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.models
的用法示例。
在下文中一共展示了models.DatetimeTickFormatter方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: style_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def style_plot(plot):
# axis styling, legend styling
plot.outline_line_color = None
plot.axis.axis_label = None
plot.axis.axis_line_color = None
plot.axis.major_tick_line_color = None
plot.axis.minor_tick_line_color = None
plot.xgrid.grid_line_color = None
plot.xaxis.formatter = DatetimeTickFormatter(hours=["%d %b %Y"],
days=["%d %b %Y"],
months=["%d %b %Y"],
years=["%d %b %Y"]
)
#plot.legend.location = "top_left"
#plot.legend.border_line_alpha = 0
#plot.legend.background_fill_alpha = 0
plot.title.text_font_size = "14pt"
return plot
示例2: style_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def style_plot(plot):
# axis styling, legend styling
plot.outline_line_color = None
plot.axis.axis_label = None
plot.axis.axis_line_color = None
plot.axis.major_tick_line_color = None
plot.axis.minor_tick_line_color = None
plot.xgrid.grid_line_color = None
plot.xaxis.formatter = DatetimeTickFormatter(hours=["%d %b %Y"],
days=["%d %b %Y"],
months=["%d %b %Y"],
years=["%d %b %Y"]
)
plot.legend.location = "top_left"
plot.legend.border_line_alpha = 0
plot.legend.background_fill_alpha = 0
plot.title.text_font_size = "14pt"
return plot
示例3: style_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def style_plot(plot):
plot.outline_line_color = None
plot.axis.axis_label = None
plot.axis.axis_line_color = None
plot.axis.major_tick_line_color = None
plot.axis.minor_tick_line_color = None
plot.ygrid.grid_line_color = None
plot.xgrid.grid_line_color = None
plot.xaxis.formatter = DatetimeTickFormatter(hours=["%H:%M"],
days=["%H:%M"],
months=["%H:%M"],
years=["%H:%M"],
)
plot.title.text_font_size = "14pt"
return plot
示例4: build_pv_fig
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def build_pv_fig(data):
# ========== themes & appearance ============= #
LINE_COLOR = "#053061"
LINE_WIDTH = 1.5
TITLE = "PORTFOLIO VALUE OVER TIME"
# ========== data ============= #
dates = np.array(data['date'], dtype=np.datetime64)
pv_source = ColumnDataSource(data=dict(date=dates, portfolio_value=data['portfolio_value']))
# ========== plot data points ============= #
# x_range is the zoom in slider setup. Pls ensure both STK_1 and STK_2 have same length, else some issue
pv_p = figure(plot_height=250, plot_width=600, title=TITLE, toolbar_location=None)
pv_p.line('date', 'portfolio_value', source=pv_source, line_color = LINE_COLOR, line_width = LINE_WIDTH)
pv_p.yaxis.axis_label = 'Portfolio Value'
pv_p.xaxis[0].formatter = DatetimeTickFormatter()
return pv_p
示例5: add_plot
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def add_plot(stockStat, conf):
p_list = []
logging.info("############################", type(conf["dic"]))
# 循环 多个line 信息。
for key, val in enumerate(conf["dic"]):
logging.info(key)
logging.info(val)
p1 = figure(width=1000, height=150, x_axis_type="datetime")
# add renderers
stockStat["date"] = pd.to_datetime(stockStat.index.values)
# ["volume","volume_delta"]
# 设置20个颜色循环,显示0 2 4 6 号序列。
p1.line(stockStat["date"], stockStat[val], color=Category20[20][key * 2])
# Set date format for x axis 格式化。
p1.xaxis.formatter = DatetimeTickFormatter(
hours=["%Y-%m-%d"], days=["%Y-%m-%d"],
months=["%Y-%m-%d"], years=["%Y-%m-%d"])
# p1.xaxis.major_label_orientation = radians(30) #可以旋转一个角度。
p_list.append([p1])
gp = gridplot(p_list)
script, div = components(gp)
return {
"script": script,
"div": div,
"title": conf["title"],
"desc": conf["desc"]
}
示例6: timeseries
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def timeseries():
# Get data
df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv')
df['datetime'] = pd.to_datetime(df['datetime'])
df = df[['anomaly','datetime']]
df['moving_average'] = pd.rolling_mean(df['anomaly'], 12)
df = df.fillna(0)
# List all the tools that you want in your plot separated by comas, all in one string.
TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave"
# New figure
t = figure(x_axis_type = "datetime", width=1000, height=200,tools=TOOLS)
# Data processing
# The hover tools doesn't render datetime appropriately. We'll need a string.
# We just want dates, remove time
f = lambda x: str(x)[:7]
df["datetime_s"]=df[["datetime"]].applymap(f)
source = ColumnDataSource(df)
# Create plot
t.line('datetime', 'anomaly', color='lightgrey', legend='anom', source=source)
t.line('datetime', 'moving_average', color='red', legend='avg', source=source, name="mva")
# Style
xformatter = DatetimeTickFormatter(formats=dict(months=["%b %Y"], years=["%Y"]))
t.xaxis[0].formatter = xformatter
t.xaxis.major_label_orientation = math.pi/4
t.yaxis.axis_label = 'Anomaly(ºC)'
t.legend.orientation = "bottom_right"
t.grid.grid_line_alpha=0.2
t.toolbar_location=None
# Style hover tool
hover = t.select(dict(type=HoverTool))
hover.tooltips = """
<div>
<span style="font-size: 15px;">Anomaly</span>
<span style="font-size: 17px; color: red;">@anomaly</span>
</div>
<div>
<span style="font-size: 15px;">Month</span>
<span style="font-size: 10px; color: grey;">@datetime_s</span>
</div>
"""
hover.renderers = t.select("mva")
# Show plot
#show(t)
return t
# Add title
示例7: timeseries
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def timeseries():
# Get data
df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv')
df['datetime'] = pd.to_datetime(df['datetime'])
df = df[['anomaly','datetime']]
df['moving_average'] = pd.rolling_mean(df['anomaly'], 12)
df = df.fillna(0)
# List all the tools that you want in your plot separated by comas, all in one string.
TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave"
# New figure
t = figure(x_axis_type = "datetime", width=1000, height=200,tools=TOOLS)
# Data processing
# The hover tools doesn't render datetime appropriately. We'll need a string.
# We just want dates, remove time
f = lambda x: str(x)[:7]
df["datetime_s"]=df[["datetime"]].applymap(f)
source = ColumnDataSource(df)
# Create plot
t.line('datetime', 'anomaly', color='lightgrey', legend='anom', source=source)
t.line('datetime', 'moving_average', color='red', legend='avg', source=source, name="mva")
# Style
xformatter = DatetimeTickFormatter(formats=dict(months=["%b %Y"], years=["%Y"]))
t.xaxis[0].formatter = xformatter
t.xaxis.major_label_orientation = math.pi/4
t.yaxis.axis_label = 'Anomaly(ºC)'
t.legend.orientation = "bottom_right"
t.grid.grid_line_alpha=0.2
t.toolbar_location=None
# Style hover tool
hover = t.select(dict(type=HoverTool))
hover.tooltips = """
<div>
<span style="font-size: 15px;">Anomaly</span>
<span style="font-size: 17px; color: red;">@anomaly</span>
</div>
<div>
<span style="font-size: 15px;">Month</span>
<span style="font-size: 10px; color: grey;">@datetime_s</span>
</div>
"""
hover.renderers = t.select("mva")
# Show plot
#show(t)
return t
示例8: build_normalized_price_fig
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def build_normalized_price_fig(data):
# ========== themes & appearance ============= #
STK_1_LINE_COLOR = "#053061"
STK_2_LINE_COLOR = "#67001f"
STK_1_LINE_WIDTH = 1.5
STK_2_LINE_WIDTH = 1.5
WINDOW_SIZE = 10
TITLE = "PRICE OF X vs Y"
HEIGHT = 250
SLIDER_HEIGHT = 150
WIDTH = 600
# ========== data ============= #
# use sample data from ib-data folder
dates = np.array(data['date'], dtype=np.datetime64)
STK_1_source = ColumnDataSource(data=dict(date=dates, close=data['data0']))
STK_2_source = ColumnDataSource(data=dict(date=dates, close=data['data1']))
# ========== plot data points ============= #
# x_range is the zoom in slider setup. Pls ensure both STK_1 and STK_2 have same length, else some issue
normp = figure(plot_height=HEIGHT,
plot_width=WIDTH,
x_range=(dates[-WINDOW_SIZE], dates[-1]),
title=TITLE,
toolbar_location=None)
normp.line('date', 'close', source=STK_1_source, line_color = STK_1_LINE_COLOR, line_width = STK_1_LINE_WIDTH)
normp.line('date', 'close', source=STK_2_source, line_color = STK_2_LINE_COLOR, line_width = STK_2_LINE_WIDTH)
normp.yaxis.axis_label = 'Price'
normp.xaxis[0].formatter = DatetimeTickFormatter()
# ========== RANGE SELECT TOOL ============= #
select = figure(title="Drag the middle and edges of the selection box to change the range above",
plot_height=SLIDER_HEIGHT, plot_width=WIDTH, y_range=normp.y_range,
x_axis_type="datetime", y_axis_type=None,
tools="", toolbar_location=None, background_fill_color="#efefef")
range_tool = RangeTool(x_range=normp.x_range)
range_tool.overlay.fill_color = "navy"
range_tool.overlay.fill_alpha = 0.2
select.line('date', 'close', source=STK_1_source, line_color = STK_1_LINE_COLOR, line_width = STK_1_LINE_WIDTH)
select.line('date', 'close', source=STK_2_source, line_color = STK_2_LINE_COLOR, line_width = STK_2_LINE_WIDTH)
select.ygrid.grid_line_color = None
select.add_tools(range_tool)
select.toolbar.active_multi = range_tool
return column(normp, select)
示例9: build_spread_fig
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import DatetimeTickFormatter [as 别名]
def build_spread_fig(data, action_df):
palette = ["#053061", "#67001f"]
LINE_WIDTH = 1.5
LINE_COLOR = palette[-1]
TITLE = "RULE BASED SPREAD TRADING"
HEIGHT = 250
WIDTH = 600
# ========== data ============= #
# TODO: get action_source array
# TODO: map actions to colours so can map to palette[i]
dates = np.array(data['date'], dtype=np.datetime64)
spread_source = ColumnDataSource(data=dict(date=dates, spread=data['spread']))
action_source = ColumnDataSource(action_df)
# action_source['colors'] = [palette[i] x for x in action_source['actions']]
# ========== figure INTERACTION properties ============= #
TOOLS = "hover,pan,wheel_zoom,box_zoom,reset,save"
spread_p = figure(tools=TOOLS, toolbar_location=None, plot_height=HEIGHT, plot_width=WIDTH, title=TITLE)
# spread_p.background_fill_color = "#dddddd"
spread_p.xaxis.axis_label = "Backtest Period"
spread_p.yaxis.axis_label = "Spread"
# spread_p.grid.grid_line_color = "white"
# ========== plot data points ============= #
# plot the POINT coords of the ACTIONS
circles = spread_p.circle("date", "spread", size=12, source=action_source, fill_alpha=0.8)
circles_hover = bkm.HoverTool(renderers=[circles], tooltips = [
("Action", "@latest_trade_action"),
("Stock Bought", "@buy_stk"),
("Bought Amount", "@buy_amt"),
("Stock Sold", "@sell_stk"),
("Sold Amount", "@sell_amt")
])
spread_p.add_tools(circles_hover)
# plot the spread over time
spread_p.line('date', 'spread', source=spread_source, line_color = LINE_COLOR, line_width = LINE_WIDTH)
spread_p.xaxis[0].formatter = DatetimeTickFormatter()
return spread_p