本文整理汇总了Python中bokeh.models.ColorBar方法的典型用法代码示例。如果您正苦于以下问题:Python models.ColorBar方法的具体用法?Python models.ColorBar怎么用?Python models.ColorBar使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.models
的用法示例。
在下文中一共展示了models.ColorBar方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _construct_colorbars
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def _construct_colorbars(self, color_mappers=None):
if not color_mappers:
color_mappers = self.color_mappers
from bokeh.models import Plot, ColorBar, FixedTicker
cbs = []
for color_mapper in color_mappers:
ticks = np.linspace(color_mapper.low, color_mapper.high, 5)
cbs.append(ColorBar(
color_mapper=color_mapper,
title=color_mapper.name,
ticker=FixedTicker(ticks=ticks),
label_standoff=5, background_fill_alpha=0, orientation='horizontal', location=(0, 0)
))
plot = Plot(toolbar_location=None, frame_height=0, sizing_mode='stretch_width',
outline_line_width=0)
[plot.add_layout(cb, 'below') for cb in cbs]
return plot
示例2: visualize_between_sentences
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def visualize_between_sentences(sentences, vec_list, palette="Viridis256",
filename="/notebooks/embedding/between-sentences.png",
use_notebook=False):
df_list, score_list = [], []
for sent1_idx, sentence1 in enumerate(sentences):
for sent2_idx, sentence2 in enumerate(sentences):
vec1, vec2 = vec_list[sent1_idx], vec_list[sent2_idx]
if np.any(vec1) and np.any(vec2):
score = cosine_similarity(X=[vec1], Y=[vec2])
df_list.append({'x': sentence1, 'y': sentence2, 'similarity': score[0][0]})
score_list.append(score[0][0])
df = pd.DataFrame(df_list)
color_mapper = LinearColorMapper(palette=palette, low=np.max(score_list), high=np.min(score_list))
TOOLS = "hover,save,pan,box_zoom,reset,wheel_zoom"
p = figure(x_range=sentences, y_range=list(reversed(sentences)),
x_axis_location="above", plot_width=900, plot_height=900,
toolbar_location='below', tools=TOOLS,
tooltips=[('sentences', '@x @y'), ('similarity', '@similarity')])
p.grid.grid_line_color = None
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_standoff = 0
p.xaxis.major_label_orientation = 3.14 / 3
p.rect(x="x", y="y", width=1, height=1,
source=df,
fill_color={'field': 'similarity', 'transform': color_mapper},
line_color=None)
color_bar = ColorBar(ticker=BasicTicker(desired_num_ticks=5),
color_mapper=color_mapper, major_label_text_font_size="7pt",
label_standoff=6, border_line_color=None, location=(0, 0))
p.add_layout(color_bar, 'right')
if use_notebook:
output_notebook()
show(p)
else:
export_png(p, filename)
print("save @ " + filename)
示例3: visualize_between_words
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def visualize_between_words(words, vecs, palette="Viridis256", filename="/notebooks/embedding/between-words.png",
use_notebook=False):
df_list = []
for word1_idx, word1 in enumerate(words):
for word2_idx, word2 in enumerate(words):
vec1 = vecs[word1_idx]
vec2 = vecs[word2_idx]
if np.any(vec1) and np.any(vec2):
score = cosine_similarity(X=[vec1], Y=[vec2])
df_list.append({'x': word1, 'y': word2, 'similarity': score[0][0]})
df = pd.DataFrame(df_list)
color_mapper = LinearColorMapper(palette=palette, low=1, high=0)
TOOLS = "hover,save,pan,box_zoom,reset,wheel_zoom"
p = figure(x_range=list(words), y_range=list(reversed(list(words))),
x_axis_location="above", plot_width=900, plot_height=900,
toolbar_location='below', tools=TOOLS,
tooltips=[('words', '@x @y'), ('similarity', '@similarity')])
p.grid.grid_line_color = None
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_standoff = 0
p.xaxis.major_label_orientation = 3.14 / 3
p.rect(x="x", y="y", width=1, height=1,
source=df,
fill_color={'field': 'similarity', 'transform': color_mapper},
line_color=None)
color_bar = ColorBar(ticker=BasicTicker(desired_num_ticks=5),
color_mapper=color_mapper, major_label_text_font_size="7pt",
label_standoff=6, border_line_color=None, location=(0, 0))
p.add_layout(color_bar, 'right')
if use_notebook:
output_notebook()
show(p)
else:
export_png(p, filename)
print("save @ " + filename)
示例4: test_quadmesh_colorbar
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def test_quadmesh_colorbar(self):
n = 21
xs = np.logspace(1, 3, n)
ys = np.linspace(1, 10, n)
qmesh = QuadMesh((xs, ys, np.random.rand(n-1, n-1))).options(colorbar=True)
plot = bokeh_renderer.get_plot(qmesh)
self.assertIsInstance(plot.handles['colorbar'], ColorBar)
self.assertIs(plot.handles['colorbar'].color_mapper, plot.handles['color_mapper'])
示例5: test_radial_heatmap_colorbar
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def test_radial_heatmap_colorbar(self):
hm = HeatMap([(0, 0, 1), (0, 1, 2), (1, 0, 3)]).options(radial=True, colorbar=True)
plot = bokeh_renderer.get_plot(hm)
self.assertIsInstance(plot.handles.get('colorbar'), ColorBar)
示例6: _plot_contour
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def _plot_contour(self, p, contour_data, x_range, y_range):
"""Plot contour data.
Parameters
----------
p: bokeh.plotting.figure
figure to be drawn upon
contour_data: Dict[str -> np.array]
dict from labels to array with contour data
x_range: List[float, float]
min and max of x-axis
y_range: List[float, float]
min and max of y-axis
Returns
-------
handles: dict[str -> tuple(ImageGlyph, tuple(float, float))]
mapping from label to image glyph and min/max-tuple
"""
unique = np.unique(np.concatenate([contour_data[label][2] for label in contour_data.keys()]))
color_mapper = LinearColorMapper(palette="Viridis256", low=np.min(unique), high=np.max(unique))
handles = {}
default_label = 'combined' if 'combined' in contour_data.keys() else list(contour_data.keys())[0]
for label, data in contour_data.items():
unique = np.unique(contour_data[label][2])
handles[label] = (p.image(image=contour_data[label], x=x_range[0], y=y_range[0],
dw=x_range[1] - x_range[0], dh=y_range[1] - y_range[0],
color_mapper=color_mapper),
(np.min(unique), np.max(unique)))
if not label == default_label and len(contour_data) > 1:
handles[label][0].visible = False
color_bar = ColorBar(color_mapper=color_mapper,
ticker=BasicTicker(desired_num_ticks=15),
label_standoff=12,
border_line_color=None, location=(0, 0))
color_bar.major_label_text_font_size = '12pt'
p.add_layout(color_bar, 'right')
return handles, color_mapper
示例7: image
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def image(img, x=None, y=None, colormap='Plasma256', clim=None, clabel=None, title=None, xlabel=None, ylabel=None, xlim=None, ylim=None, xtype='auto', ytype='auto', width=None, height=None, hold=False, interactive=None):
"""Plot a heatmap of 2D scalar data.
:param img: 2D image data
:param x: x-axis range for image data (min, max)
:param y: y-axis range for image data (min, max)
:param colormap: named color palette or Bokeh ColorMapper (see `Bokeh palettes <https://bokeh.pydata.org/en/latest/docs/reference/palettes.html>`_)
:param clim: color axis limits (min, max)
:param clabel: color axis label
:param title: figure title
:param xlabel: x-axis label
:param ylabel: y-axis label
:param xlim: x-axis limits (min, max)
:param ylim: y-axis limits (min, max)
:param xtype: x-axis type ('auto', 'linear', 'log', etc)
:param ytype: y-axis type ('auto', 'linear', 'log', etc)
:param width: figure width in pixels
:param height: figure height in pixels
:param interactive: enable interactive tools (pan, zoom, etc) for plot
:param hold: if set to True, output is not plotted immediately, but combined with the next plot
>>> import arlpy.plot
>>> import numpy as np
>>> arlpy.plot.image(np.random.normal(size=(100,100)), colormap='Inferno256')
"""
global _figure
if x is None:
x = (0, img.shape[1]-1)
if y is None:
y = (0, img.shape[0]-1)
if xlim is None:
xlim = x
if ylim is None:
ylim = y
if _figure is None:
_figure = _new_figure(title, width, height, xlabel, ylabel, xlim, ylim, xtype, ytype, interactive)
if clim is None:
clim = [_np.amin(img), _np.amax(img)]
if not isinstance(colormap, _bmodels.ColorMapper):
colormap = _bmodels.LinearColorMapper(palette=colormap, low=clim[0], high=clim[1])
_figure.image([img], x=x[0], y=y[0], dw=x[-1]-x[0], dh=y[-1]-y[0], color_mapper=colormap)
cbar = _bmodels.ColorBar(color_mapper=colormap, location=(0,0), title=clabel)
_figure.add_layout(cbar, 'right')
if not hold and not _hold:
_show(_figure)
_figure = None
示例8: test_vtk_pane_more_complex
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def test_vtk_pane_more_complex(document, comm, tmp_path):
renWin = pyvista_render_window()
pane = VTK(renWin)
# Create pane
model = pane.get_root(document, comm=comm)
assert isinstance(model, VTKSynchronizedPlot)
assert pane._models[model.ref['id']][0] is model
colorbars_infered = pane.construct_colorbars().object
assert len(colorbars_infered.below) == 2 # infer only actor color bars
assert all(isinstance(cb, ColorBar) for cb in colorbars_infered.below)
colorbars_in_scene = pane.construct_colorbars(infer=False).object()
assert len(colorbars_in_scene.below) == 3
assert all(isinstance(cb, ColorBar) for cb in colorbars_in_scene.below)
# add axes
pane.axes = dict(
origin = [-5, 5, -2],
xticker = {'ticks': np.linspace(-5,5,5)},
yticker = {'ticks': np.linspace(-5,5,5)},
zticker = {'ticks': np.linspace(-2,2,5),
'labels': [''] + [str(int(item)) for item in np.linspace(-2,2,5)[1:]]},
fontsize = 12,
digits = 1,
grid_opacity = 0.5,
show_grid=True
)
assert isinstance(model.axes, VTKAxes)
# test export to file
tmpfile = os.path.join(*tmp_path.joinpath('scene').parts)
exported_file = pane.export_scene(filename=tmpfile)
assert exported_file.endswith('.synch')
# test import from file
# (TODO test if the scene imported is identical to the one exported)
imported_scene = VTK.import_scene(filename=exported_file)
assert isinstance(imported_scene, VTKRenderWindowSynchronized)
# Cleanup
pane._cleanup(model)
assert pane._contexts == {}
assert pane._models == {}
示例9: HeatTable
# 需要导入模块: from bokeh import models [as 别名]
# 或者: from bokeh.models import ColorBar [as 别名]
def HeatTable(self):
ready = {}
for item in self.sharedCount:
ready.update({ (item.split(',')[0],item.split(',')[1]): self.sharedCount[item] })
k = np.array([item for item in ready])
v = np.array([ready[item] for item in ready])
unq_keys, key_idx = np.unique(k, return_inverse=True)
key_idx = key_idx.reshape(-1, 2)
n = len(unq_keys)
adj = np.zeros((n, n), dtype=v.dtype)
adj[key_idx[:, 0], key_idx[:, 1]] = v
adj += adj.T
adj = adj.astype(float)
for i in range(0,adj.shape[0]):
for k in range(0,adj.shape[1]):
if k<=i:
adj[i,k]=np.nan
dfout = pd.DataFrame(data=np.log10(adj+0.01),index = unq_keys, columns = unq_keys)
dfout.index.name = 'Sam1'
dfout.columns.name = 'Sam2'
df = pd.DataFrame(dfout.stack(), columns=['Neoantigens']).reset_index()
source = ColumnDataSource(df)
import bokeh.palettes as p
colors = p.Plasma256
mapper = LinearColorMapper(palette=colors, low=df.Neoantigens.min(), high=df.Neoantigens.max())
p = figure(title = "log10( Shared Neoantigens )", plot_height=400, plot_width=400, x_range=list(dfout.index), y_range=list(reversed(dfout.columns)),
toolbar_location=None, tools="", x_axis_location="below")
p.grid.grid_line_color = None
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_text_font_size = "5pt"
p.axis.major_label_standoff = 0
p.xaxis.major_label_orientation = np.pi / 3
p.rect(x='Sam1',y='Sam2', source=source, width=1, height=1, fill_color={'field':'Neoantigens','transform':mapper}, line_color=None)
color_bar = ColorBar(color_mapper=mapper, location=(0, 0),
ticker=BasicTicker(desired_num_ticks=int(len(colors)/10)))
p.add_layout(color_bar, 'right')
return(p)