本文整理汇总了Python中bokeh.layouts.column方法的典型用法代码示例。如果您正苦于以下问题:Python layouts.column方法的具体用法?Python layouts.column怎么用?Python layouts.column使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bokeh.layouts
的用法示例。
在下文中一共展示了layouts.column方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_plot
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.plot = figure(
x_axis_type="datetime", plot_width=600, plot_height=300,
tools='', toolbar_location=None)
self.plot.quad(
top='max_temp', bottom='min_temp', left='left', right='right',
color=Blues4[2], source=self.source, legend='Magnitude')
line = self.plot.line(
x='date', y='avg_temp', line_width=3, color=Blues4[1],
source=self.source, legend='Average')
hover_tool = HoverTool(tooltips=[
('Value', '$y'),
('Date', '@date_readable'),
], renderers=[line])
self.plot.tools.append(hover_tool)
self.plot.xaxis.axis_label = None
self.plot.yaxis.axis_label = None
self.plot.axis.axis_label_text_font_style = 'bold'
self.plot.x_range = DataRange1d(range_padding=0.0)
self.plot.grid.grid_line_alpha = 0.3
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
示例2: make_plot
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
palette = all_palettes['Set2'][6]
hover_tool = HoverTool(tooltips=[
("Value", "$y"),
("Year", "@year"),
])
self.plot = figure(
plot_width=600, plot_height=300, tools=[hover_tool],
toolbar_location=None)
columns = {
'pm10': 'PM10 Mass (µg/m³)',
'pm25_frm': 'PM2.5 FRM (µg/m³)',
'pm25_nonfrm': 'PM2.5 non FRM (µg/m³)',
'lead': 'Lead (¹/₁₀₀ µg/m³)',
}
for i, (code, label) in enumerate(columns.items()):
self.plot.line(
x='year', y=code, source=self.source, line_width=3,
line_alpha=0.6, line_color=palette[i], legend=label)
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
# [END make_plot]
示例3: make_plot
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.plot = figure(
x_axis_type="datetime", plot_width=400, plot_height=300,
tools='', toolbar_location=None)
vbar = self.plot.vbar(
x='date', top='prcp', width=1, color='#fdae61', source=self.source)
hover_tool = HoverTool(tooltips=[
('Value', '$y'),
('Date', '@date_readable'),
], renderers=[vbar])
self.plot.tools.append(hover_tool)
self.plot.xaxis.axis_label = None
self.plot.yaxis.axis_label = None
self.plot.axis.axis_label_text_font_style = 'bold'
self.plot.x_range = DataRange1d(range_padding=0.0)
self.plot.grid.grid_line_alpha = 0.3
self.title = Paragraph(text=TITLE)
return column(self.title, self.plot)
示例4: modify_doc
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def modify_doc(doc):
df = sea_surface_temperature.copy()
source = ColumnDataSource(data=df)
plot = figure(x_axis_type='datetime', y_range=(0, 25), y_axis_label='Temperature (Celsius)',
title="Sea Surface Temperature at 43.18, -70.43")
plot.line('time', 'temperature', source=source)
def callback(attr, old, new):
if new == 0:
data = df
else:
data = df.rolling('{0}D'.format(new)).mean()
source.data = ColumnDataSource(data=data).data
slider = Slider(start=0, end=30, value=0, step=1, title="Smoothing by N Days")
slider.on_change('value', callback)
doc.add_root(column(slider, plot))
# doc.theme = Theme(filename="theme.yaml")
示例5: create
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def create(self):
for _ in range(self.num_cameras):
cam = BokehEventViewerCamera(self)
cam.enable_pixel_picker(self.num_waveforms)
cam.create_view_widget()
cam.update_view_widget()
cam.add_colorbar()
self.cameras.append(cam)
self.camera_layouts.append(cam.layout)
for iwav in range(self.num_waveforms):
wav = BokehEventViewerWaveform(self)
active_color = self.cameras[0].active_colors[iwav]
wav.fig.select(name="line")[0].glyph.line_color = active_color
wav.enable_time_picker()
wav.create_view_widget()
wav.update_view_widget()
self.waveforms.append(wav)
self.waveform_layouts.append(wav.layout)
self.layout = layout(
[[column(self.camera_layouts), column(self.waveform_layouts)],]
)
示例6: modify_doc
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def modify_doc(doc):
df = sea_surface_temperature.copy()
source = ColumnDataSource(data=df)
plot = figure(x_axis_type='datetime', y_range=(0, 25), y_axis_label='Temperature (Celsius)',
title="Sea Surface Temperature at 43.18, -70.43")
plot.line('time', 'temperature', source=source)
def callback(attr, old, new):
if new == 0:
data = df
else:
data = df.rolling('{0}D'.format(new)).mean()
source.data = ColumnDataSource(data=data).data
slider = Slider(start=0, end=30, value=0, step=1, title="Smoothing by N Days")
slider.on_change('value', callback)
doc.add_root(column(slider, plot))
doc.theme = Theme(filename="theme.yaml")
示例7: _plot_budget
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def _plot_budget(self, df):
limits = OrderedDict([('cost', {'lower': df['cost'].min(),
'upper': df['cost'].max()})])
for hp in self.runscontainer.scenario.cs.get_hyperparameters():
if isinstance(hp, NumericalHyperparameter):
limits[hp.name] = {'lower': hp.lower, 'upper': hp.upper}
if hp.log:
limits[hp.name]['log'] = True
elif isinstance(hp, CategoricalHyperparameter):
# We pass strings as numbers and overwrite the labels
df[hp.name].replace({v: i for i, v in enumerate(hp.choices)}, inplace=True)
limits[hp.name] = {'lower': 0, 'upper': len(hp.choices) - 1, 'choices': hp.choices}
else:
raise ValueError("Hyperparameter %s of type %s causes undefined behaviour." % (hp.name, type(hp)))
p = parallel_plot(df=df, axes=limits, color=df[df.columns[0]], palette=Viridis256)
div = Div(text="Select up and down column grid lines to define filters. Double click a filter to reset it.")
plot = column(div, p)
return plot
示例8: create_files_signal
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def create_files_signal(files, use_dir_name=False):
global selected_file
new_signal_files = []
for idx, file_path in enumerate(files):
signals_file = SignalsFile(str(file_path), plot=plot, use_dir_name=use_dir_name)
signals_files[signals_file.filename] = signals_file
new_signal_files.append(signals_file)
filenames = [f.filename for f in new_signal_files]
if files_selector.options[0] == "":
files_selector.options = filenames
else:
files_selector.options = files_selector.options + filenames
files_selector.value = filenames[0]
selected_file = new_signal_files[0]
# update x axis according to the file's default x-axis (which is the index, and thus the first column)
idx = x_axis_options.index(new_signal_files[0].csv.columns[0])
change_x_axis(idx)
x_axis_selector.active = idx
示例9: home_handler
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def home_handler(doc):
data = {'x': [0, 1, 2, 3, 4, 5], 'y': [0, 10, 20, 30, 40, 50]}
source = ColumnDataSource(data=data)
plot = figure(x_axis_type="linear", y_range=(0, 50), title="Test App Bokeh + Channels Plot", height=250)
plot.line(x="x", y="y", source=source)
def callback(attr: str, old: Any, new: Any) -> None:
if new == 1:
data['y'] = [0, 10, 20, 30, 40, 50]
else:
data['y'] = [i * new for i in [0, 10, 20, 30, 40, 50]]
source.data = dict(ColumnDataSource(data=data).data)
plot.y_range.end = max(data['y'])
slider = Slider(start=1, end=5, value=1, step=1, title="Test App Bokeh + Channels Controller")
slider.on_change("value", callback)
doc.add_root(column(slider, plot))
示例10: update_display_data
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def update_display_data(self, patch_dict):
# self.source.patch({'path': [(0, 'hello world')]})
# self.original_source.patch({'path': [(0, 'hello world')]})
# update data, use patch for updating specific location, use add for adding a new column
#
# 1. if we want to investigate new data, then we need to reload the website
# 2. to incrementally add redis data to the graph, we should use ColumnDataSource.stream
self.original_source.patch(patch_dict)
示例11: plot
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def plot(self, **kwargs) -> Tuple[figure, LayoutDOM]:
"""
Build and plot a process tree.
Parameters
----------
schema : ProcSchema, optional
The data schema to use for the data set, by default None
(if None the schema is inferred)
output_var : str, optional
Output variable for selected items in the tree,
by default None
legend_col : str, optional
The column used to color the tree items, by default None
show_table: bool
Set to True to show a data table, by default False.
Other Parameters
----------------
height : int, optional
The height of the plot figure
(the default is 700)
width : int, optional
The width of the plot figure (the default is 900)
title : str, optional
Title to display (the default is None)
Returns
-------
Tuple[figure, LayoutDOM]:
figure - The main bokeh.plotting.figure
Layout - Bokeh layout structure.
"""
return build_and_show_process_tree(data=self._df, **kwargs)
示例12: build
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def build(self, schema: ProcSchema = None, **kwargs) -> pd.DataFrame:
"""
Build process trees from the process events.
Parameters
----------
procs : pd.DataFrame
Process events (Windows 4688 or Linux Auditd)
schema : ProcSchema, optional
The column schema to use, by default None
If None, then the schema is inferred
show_progress : bool
Shows the progress of the process (helpful for
very large data sets)
debug : bool
If True produces extra debugging output,
by default False
Returns
-------
pd.DataFrame
Process tree dataframe.
Notes
-----
It is not necessary to call this before `plot`. The process
tree is built automatically. This is only needed if you want
to return the processed tree data as a DataFrame
"""
return build_process_tree(
procs=self._df,
schema=schema,
show_progress=kwargs.get("show_progress", False),
debug=kwargs.get("debug", False),
)
示例13: _create_data_grouping
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def _create_data_grouping(data, source_columns, time_column, group_by, color):
if not source_columns:
data_columns = set(["NewProcessName", "EventID", "CommandLine"])
else:
data_columns = set(source_columns)
tool_tip_columns = data_columns.copy()
# If the time column not explicity specified in source_columns, add it
data_columns.add(time_column)
# create group frame so that we can color each group separately
if group_by:
group_count_df = (
data[[group_by, time_column]]
.groupby(group_by)
.count()
.reset_index()
.rename(columns={time_column: "count"})
)
group_count_df["y_index"] = group_count_df.index
# Shift the Viridis palatte so we lose the top, harder-to-see colors
series_count = len(group_count_df)
colors, palette_size = _get_color_palette(series_count)
group_count_df["color"] = group_count_df.apply(
lambda x: colors[x.y_index % palette_size], axis=1
)
# re-join with the original data
data_columns.update([group_by, "y_index", "color"])
clean_data = data.drop(columns=["y_index", "color"], errors="ignore")
graph_df = clean_data.merge(group_count_df, on=group_by)[list(data_columns)]
else:
graph_df = data[list(data_columns)].copy()
graph_df["color"] = color
graph_df["y_index"] = 1
series_count = 1
group_count_df = None
return graph_df, group_count_df, tool_tip_columns, series_count
# pylint: enable=too-many-arguments
示例14: make_plot
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def make_plot(self, dataframe):
self.source = ColumnDataSource(data=dataframe)
self.title = Paragraph(text=TITLE)
self.data_table = DataTable(source=self.source, width=390, height=275, columns=[
TableColumn(field="zipcode", title="Zipcodes", width=100),
TableColumn(field="population", title="Population", width=100, formatter=NumberFormatter(format="0,0")),
TableColumn(field="city", title="City")
])
return column(self.title, self.data_table)
示例15: PlotWidget
# 需要导入模块: from bokeh import layouts [as 别名]
# 或者: from bokeh.layouts import column [as 别名]
def PlotWidget(*args, **kw):
return column(name=kw['name'])