本文整理汇总了Python中blocks.model.Model方法的典型用法代码示例。如果您正苦于以下问题:Python model.Model方法的具体用法?Python model.Model怎么用?Python model.Model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类blocks.model
的用法示例。
在下文中一共展示了model.Model方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_model_handles_brickless_parameteres
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def test_model_handles_brickless_parameteres():
x = tensor.matrix('x')
v = shared_floatx(numpy.zeros((10, 10)), name='V')
add_role(v, PARAMETER)
y = x.dot(v)
model = Model(y)
assert list(model.get_parameter_dict().items()) == [('V', v)]
示例2: test_sampling
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def test_sampling():
# Create Theano variables
sampling_input = theano.tensor.lmatrix('input')
# Construct model
encoder = BidirectionalEncoder(
vocab_size=10, embedding_dim=5, state_dim=8)
decoder = Decoder(
vocab_size=12, embedding_dim=6, state_dim=8, representation_dim=16,
theano_seed=1234)
sampling_representation = encoder.apply(
sampling_input, theano.tensor.ones(sampling_input.shape))
generateds = decoder.generate(sampling_input, sampling_representation)
model = Model(generateds[1])
# Initialize model
encoder.weights_init = decoder.weights_init = IsotropicGaussian(
0.01)
encoder.biases_init = decoder.biases_init = Constant(0)
encoder.push_initialization_config()
decoder.push_initialization_config()
encoder.bidir.prototype.weights_init = Orthogonal()
decoder.transition.weights_init = Orthogonal()
encoder.initialize()
decoder.initialize()
# Compile a function for the generated
sampling_fn = model.get_theano_function()
# Create literal variables
numpy.random.seed(1234)
x = numpy.random.randint(0, 10, size=(1, 2))
# Call function and check result
generated_step = sampling_fn(x)
assert len(generated_step[0].flatten()) == 4
示例3: main
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def main(save_to, num_batches):
mlp = MLP([Tanh(), Identity()], [1, 10, 1],
weights_init=IsotropicGaussian(0.01),
biases_init=Constant(0), seed=1)
mlp.initialize()
x = tensor.vector('numbers')
y = tensor.vector('roots')
cost = SquaredError().apply(y[:, None], mlp.apply(x[:, None]))
cost.name = "cost"
main_loop = MainLoop(
GradientDescent(
cost=cost, parameters=ComputationGraph(cost).parameters,
step_rule=Scale(learning_rate=0.001)),
get_data_stream(range(100)),
model=Model(cost),
extensions=[
Timing(),
FinishAfter(after_n_batches=num_batches),
DataStreamMonitoring(
[cost], get_data_stream(range(100, 200)),
prefix="test"),
TrainingDataMonitoring([cost], after_epoch=True),
Checkpoint(save_to),
Printing()])
main_loop.run()
return main_loop
示例4: test_checkpointing
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def test_checkpointing():
# Create a main loop and checkpoint it
mlp = MLP(activations=[None], dims=[10, 10], weights_init=Constant(1.),
use_bias=False)
mlp.initialize()
W = mlp.linear_transformations[0].W
x = tensor.vector('data')
cost = mlp.apply(x).mean()
data = numpy.random.rand(10, 10).astype(theano.config.floatX)
data_stream = IterableDataset(data).get_example_stream()
main_loop = MainLoop(
data_stream=data_stream,
algorithm=GradientDescent(cost=cost, parameters=[W]),
extensions=[FinishAfter(after_n_batches=5),
Checkpoint('myweirdmodel.tar', parameters=[W])]
)
main_loop.run()
# Load it again
old_value = W.get_value()
W.set_value(old_value * 2)
main_loop = MainLoop(
model=Model(cost),
data_stream=data_stream,
algorithm=GradientDescent(cost=cost, parameters=[W]),
extensions=[Load('myweirdmodel.tar')]
)
main_loop.extensions[0].main_loop = main_loop
main_loop._run_extensions('before_training')
assert_allclose(W.get_value(), old_value)
# Make sure things work too if the model was never saved before
main_loop = MainLoop(
model=Model(cost),
data_stream=data_stream,
algorithm=GradientDescent(cost=cost, parameters=[W]),
extensions=[Load('mynonexisting.tar')]
)
main_loop.extensions[0].main_loop = main_loop
main_loop._run_extensions('before_training')
# Cleaning
if os.path.exists('myweirdmodel.tar'):
os.remove('myweirdmodel.tar')
示例5: test_model
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def test_model():
x = tensor.matrix('x')
mlp1 = MLP([Tanh(), Tanh()], [10, 20, 30], name="mlp1")
mlp2 = MLP([Tanh()], [30, 40], name="mlp2")
h1 = mlp1.apply(x)
h2 = mlp2.apply(h1)
model = Model(h2)
assert model.get_top_bricks() == [mlp1, mlp2]
# The order of parameters returned is deterministic but
# not sensible.
assert list(model.get_parameter_dict().items()) == [
('/mlp2/linear_0.b', mlp2.linear_transformations[0].b),
('/mlp1/linear_1.b', mlp1.linear_transformations[1].b),
('/mlp1/linear_0.b', mlp1.linear_transformations[0].b),
('/mlp1/linear_0.W', mlp1.linear_transformations[0].W),
('/mlp1/linear_1.W', mlp1.linear_transformations[1].W),
('/mlp2/linear_0.W', mlp2.linear_transformations[0].W)]
# Test getting and setting parameter values
mlp3 = MLP([Tanh()], [10, 10])
mlp3.allocate()
model3 = Model(mlp3.apply(x))
parameter_values = {
'/mlp/linear_0.W': 2 * numpy.ones((10, 10),
dtype=theano.config.floatX),
'/mlp/linear_0.b': 3 * numpy.ones(10, dtype=theano.config.floatX)}
model3.set_parameter_values(parameter_values)
assert numpy.all(
mlp3.linear_transformations[0].parameters[0].get_value() == 2)
assert numpy.all(
mlp3.linear_transformations[0].parameters[1].get_value() == 3)
got_parameter_values = model3.get_parameter_values()
assert len(got_parameter_values) == len(parameter_values)
for name, value in parameter_values.items():
assert_allclose(value, got_parameter_values[name])
# Test exception is raised if parameter shapes don't match
def helper():
parameter_values = {
'/mlp/linear_0.W': 2 * numpy.ones((11, 11),
dtype=theano.config.floatX),
'/mlp/linear_0.b': 3 * numpy.ones(11, dtype=theano.config.floatX)}
model3.set_parameter_values(parameter_values)
assert_raises(ValueError, helper)
# Test name conflict handling
mlp4 = MLP([Tanh()], [10, 10])
def helper():
Model(mlp4.apply(mlp3.apply(x)))
assert_raises(ValueError, helper)
示例6: main
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def main(save_to, num_epochs):
mlp = MLP([Tanh(), Softmax()], [784, 100, 10],
weights_init=IsotropicGaussian(0.01),
biases_init=Constant(0))
mlp.initialize()
x = tensor.matrix('features')
y = tensor.lmatrix('targets')
probs = mlp.apply(x)
cost = CategoricalCrossEntropy().apply(y.flatten(), probs)
error_rate = MisclassificationRate().apply(y.flatten(), probs)
cg = ComputationGraph([cost])
W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
cost = cost + .00005 * (W1 ** 2).sum() + .00005 * (W2 ** 2).sum()
cost.name = 'final_cost'
mnist_train = MNIST(("train",))
mnist_test = MNIST(("test",))
algorithm = GradientDescent(
cost=cost, parameters=cg.parameters,
step_rule=Scale(learning_rate=0.1))
extensions = [Timing(),
FinishAfter(after_n_epochs=num_epochs),
DataStreamMonitoring(
[cost, error_rate],
Flatten(
DataStream.default_stream(
mnist_test,
iteration_scheme=SequentialScheme(
mnist_test.num_examples, 500)),
which_sources=('features',)),
prefix="test"),
TrainingDataMonitoring(
[cost, error_rate,
aggregation.mean(algorithm.total_gradient_norm)],
prefix="train",
after_epoch=True),
Checkpoint(save_to),
Printing()]
if BLOCKS_EXTRAS_AVAILABLE:
extensions.append(Plot(
'MNIST example',
channels=[
['test_final_cost',
'test_misclassificationrate_apply_error_rate'],
['train_total_gradient_norm']]))
main_loop = MainLoop(
algorithm,
Flatten(
DataStream.default_stream(
mnist_train,
iteration_scheme=SequentialScheme(
mnist_train.num_examples, 50)),
which_sources=('features',)),
model=Model(cost),
extensions=extensions)
main_loop.run()
示例7: run
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def run(discriminative_regularization=True):
streams = create_celeba_streams(training_batch_size=100,
monitoring_batch_size=500,
include_targets=False)
main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3]
# Compute parameter updates for the batch normalization population
# statistics. They are updated following an exponential moving average.
rval = create_training_computation_graphs(discriminative_regularization)
cg, bn_cg, variance_parameters = rval
pop_updates = list(
set(get_batch_normalization_updates(bn_cg, allow_duplicates=True)))
decay_rate = 0.05
extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
for p, m in pop_updates]
model = Model(bn_cg.outputs[0])
selector = Selector(
find_bricks(
model.top_bricks,
lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp',
'decoder_convnet', 'decoder_mlp')))
parameters = list(selector.get_parameters().values()) + variance_parameters
# Prepare algorithm
step_rule = Adam()
algorithm = GradientDescent(cost=bn_cg.outputs[0],
parameters=parameters,
step_rule=step_rule)
algorithm.add_updates(extra_updates)
# Prepare monitoring
monitored_quantities_list = []
for graph in [bn_cg, cg]:
cost, kl_term, reconstruction_term = graph.outputs
cost.name = 'nll_upper_bound'
avg_kl_term = kl_term.mean(axis=0)
avg_kl_term.name = 'avg_kl_term'
avg_reconstruction_term = -reconstruction_term.mean(axis=0)
avg_reconstruction_term.name = 'avg_reconstruction_term'
monitored_quantities_list.append(
[cost, avg_kl_term, avg_reconstruction_term])
train_monitoring = DataStreamMonitoring(
monitored_quantities_list[0], train_monitor_stream, prefix="train",
updates=extra_updates, after_epoch=False, before_first_epoch=False,
every_n_epochs=5)
valid_monitoring = DataStreamMonitoring(
monitored_quantities_list[1], valid_monitor_stream, prefix="valid",
after_epoch=False, before_first_epoch=False, every_n_epochs=5)
# Prepare checkpoint
save_path = 'celeba_vae_{}regularization.zip'.format(
'' if discriminative_regularization else 'no_')
checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True)
extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring,
valid_monitoring, checkpoint, Printing(), ProgressBar()]
main_loop = MainLoop(data_stream=main_loop_stream,
algorithm=algorithm, extensions=extensions)
main_loop.run()
示例8: create_models
# 需要导入模块: from blocks import model [as 别名]
# 或者: from blocks.model import Model [as 别名]
def create_models(self):
gan = self.create_model_brick()
x = tensor.matrix('features')
zs = []
for i in range(self._config["num_packing"]):
z = circle_gaussian_mixture(num_modes=self._config["num_zmode"], num_samples=x.shape[0], dimension=self._config["num_zdim"], r=self._config["z_mode_r"], std=self._config["z_mode_std"])
zs.append(z)
def _create_model(with_dropout):
cg = ComputationGraph(gan.compute_losses(x, zs))
if with_dropout:
inputs = VariableFilter(
bricks=gan.discriminator.children[1:],
roles=[INPUT])(cg.variables)
cg = apply_dropout(cg, inputs, 0.5)
inputs = VariableFilter(
bricks=[gan.discriminator],
roles=[INPUT])(cg.variables)
cg = apply_dropout(cg, inputs, 0.2)
return Model(cg.outputs)
model = _create_model(with_dropout=False)
with batch_normalization(gan):
bn_model = _create_model(with_dropout=False)
pop_updates = list(set(get_batch_normalization_updates(bn_model, allow_duplicates=True)))
# merge same variables
names = []
counts = []
pop_update_merges = []
pop_update_merges_finals = []
for pop_update in pop_updates:
b = False
for i in range(len(names)):
if (pop_update[0].auto_name == names[i]):
counts[i] += 1
pop_update_merges[i][1] += pop_update[1]
b = True
break
if not b:
names.append(pop_update[0].auto_name)
counts.append(1)
pop_update_merges.append([pop_update[0], pop_update[1]])
for i in range(len(pop_update_merges)):
pop_update_merges_finals.append((pop_update_merges[i][0], pop_update_merges[i][1] / counts[i]))
bn_updates = [(p, m * 0.05 + p * 0.95) for p, m in pop_update_merges_finals]
return model, bn_model, bn_updates