本文整理汇总了Python中blocks.algorithms.GradientDescent方法的典型用法代码示例。如果您正苦于以下问题:Python algorithms.GradientDescent方法的具体用法?Python algorithms.GradientDescent怎么用?Python algorithms.GradientDescent使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类blocks.algorithms
的用法示例。
在下文中一共展示了algorithms.GradientDescent方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_shared_variable_modifier
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def test_shared_variable_modifier():
weights = numpy.array([-1, 1], dtype=theano.config.floatX)
features = [numpy.array(f, dtype=theano.config.floatX)
for f in [[1, 2], [3, 4], [5, 6]]]
targets = [(weights * f).sum() for f in features]
n_batches = 3
dataset = IterableDataset(dict(features=features, targets=targets))
x = tensor.vector('features')
y = tensor.scalar('targets')
W = shared_floatx([0, 0], name='W')
cost = ((x * W).sum() - y) ** 2
cost.name = 'cost'
step_rule = Scale(0.001)
sgd = GradientDescent(cost=cost, parameters=[W],
step_rule=step_rule)
main_loop = MainLoop(
model=None, data_stream=dataset.get_example_stream(),
algorithm=sgd,
extensions=[
FinishAfter(after_n_epochs=1),
SharedVariableModifier(
step_rule.learning_rate,
lambda n: numpy.cast[theano.config.floatX](10. / n)
)])
main_loop.run()
assert_allclose(step_rule.learning_rate.get_value(),
numpy.cast[theano.config.floatX](10. / n_batches))
示例2: test_shared_variable_modifier_two_parameters
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def test_shared_variable_modifier_two_parameters():
weights = numpy.array([-1, 1], dtype=theano.config.floatX)
features = [numpy.array(f, dtype=theano.config.floatX)
for f in [[1, 2], [3, 4], [5, 6]]]
targets = [(weights * f).sum() for f in features]
n_batches = 3
dataset = IterableDataset(dict(features=features, targets=targets))
x = tensor.vector('features')
y = tensor.scalar('targets')
W = shared_floatx([0, 0], name='W')
cost = ((x * W).sum() - y) ** 2
cost.name = 'cost'
step_rule = Scale(0.001)
sgd = GradientDescent(cost=cost, parameters=[W],
step_rule=step_rule)
modifier = SharedVariableModifier(
step_rule.learning_rate,
lambda _, val: numpy.cast[theano.config.floatX](val * 0.2))
main_loop = MainLoop(
model=None, data_stream=dataset.get_example_stream(),
algorithm=sgd,
extensions=[FinishAfter(after_n_epochs=1), modifier])
main_loop.run()
new_value = step_rule.learning_rate.get_value()
assert_allclose(new_value,
0.001 * 0.2 ** n_batches,
atol=1e-5)
示例3: setup_mainloop
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def setup_mainloop(extension):
"""Set up a simple main loop for progress bar tests.
Create a MainLoop, register the given extension, supply it with a
DataStream and a minimal model/cost to optimize.
"""
# Since progressbar2 3.6.0, the `maxval` kwarg has been replaced by
# `max_value`, which has a default value of 100. If we're still using
# `maxval` by accident, this test should fail complaining that
# the progress bar has received a value out of range.
features = [numpy.array(f, dtype=theano.config.floatX)
for f in [[1, 2]] * 101]
dataset = IterableDataset(dict(features=features))
W = shared_floatx([0, 0], name='W')
x = tensor.vector('features')
cost = tensor.sum((x-W)**2)
cost.name = "cost"
algorithm = GradientDescent(cost=cost, parameters=[W],
step_rule=Scale(1e-3))
main_loop = MainLoop(
model=None, data_stream=dataset.get_example_stream(),
algorithm=algorithm,
extensions=[
FinishAfter(after_n_epochs=1),
extension])
return main_loop
示例4: test_training_data_monitoring
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def test_training_data_monitoring():
weights = numpy.array([-1, 1], dtype=theano.config.floatX)
features = [numpy.array(f, dtype=theano.config.floatX)
for f in [[1, 2], [3, 4], [5, 6]]]
targets = [(weights * f).sum() for f in features]
n_batches = 3
dataset = IterableDataset(dict(features=features, targets=targets))
x = tensor.vector('features')
y = tensor.scalar('targets')
W = shared_floatx([0, 0], name='W')
V = shared_floatx(7, name='V')
W_sum = W.sum().copy(name='W_sum')
cost = ((x * W).sum() - y) ** 2
cost.name = 'cost'
class TrueCostExtension(TrainingExtension):
def before_batch(self, data):
self.main_loop.log.current_row['true_cost'] = (
((W.get_value() * data["features"]).sum() -
data["targets"]) ** 2)
main_loop = MainLoop(
model=None, data_stream=dataset.get_example_stream(),
algorithm=GradientDescent(cost=cost, parameters=[W],
step_rule=Scale(0.001)),
extensions=[
FinishAfter(after_n_epochs=1),
TrainingDataMonitoring([W_sum, cost, V], prefix="train1",
after_batch=True),
TrainingDataMonitoring([aggregation.mean(W_sum), cost],
prefix="train2", after_epoch=True),
TrueCostExtension()])
main_loop.run()
# Check monitoring of a shared varible
assert_allclose(main_loop.log.current_row['train1_V'], 7.0)
for i in range(n_batches):
# The ground truth is written to the log before the batch is
# processed, where as the extension writes after the batch is
# processed. This is why the iteration numbers differs here.
assert_allclose(main_loop.log[i]['true_cost'],
main_loop.log[i + 1]['train1_cost'])
assert_allclose(
main_loop.log[n_batches]['train2_cost'],
sum([main_loop.log[i]['true_cost']
for i in range(n_batches)]) / n_batches)
assert_allclose(
main_loop.log[n_batches]['train2_W_sum'],
sum([main_loop.log[i]['train1_W_sum']
for i in range(1, n_batches + 1)]) / n_batches)
示例5: test_checkpointing
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def test_checkpointing():
# Create a main loop and checkpoint it
mlp = MLP(activations=[None], dims=[10, 10], weights_init=Constant(1.),
use_bias=False)
mlp.initialize()
W = mlp.linear_transformations[0].W
x = tensor.vector('data')
cost = mlp.apply(x).mean()
data = numpy.random.rand(10, 10).astype(theano.config.floatX)
data_stream = IterableDataset(data).get_example_stream()
main_loop = MainLoop(
data_stream=data_stream,
algorithm=GradientDescent(cost=cost, parameters=[W]),
extensions=[FinishAfter(after_n_batches=5),
Checkpoint('myweirdmodel.tar', parameters=[W])]
)
main_loop.run()
# Load it again
old_value = W.get_value()
W.set_value(old_value * 2)
main_loop = MainLoop(
model=Model(cost),
data_stream=data_stream,
algorithm=GradientDescent(cost=cost, parameters=[W]),
extensions=[Load('myweirdmodel.tar')]
)
main_loop.extensions[0].main_loop = main_loop
main_loop._run_extensions('before_training')
assert_allclose(W.get_value(), old_value)
# Make sure things work too if the model was never saved before
main_loop = MainLoop(
model=Model(cost),
data_stream=data_stream,
algorithm=GradientDescent(cost=cost, parameters=[W]),
extensions=[Load('mynonexisting.tar')]
)
main_loop.extensions[0].main_loop = main_loop
main_loop._run_extensions('before_training')
# Cleaning
if os.path.exists('myweirdmodel.tar'):
os.remove('myweirdmodel.tar')
示例6: main
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def main(save_to, num_epochs):
mlp = MLP([Tanh(), Softmax()], [784, 100, 10],
weights_init=IsotropicGaussian(0.01),
biases_init=Constant(0))
mlp.initialize()
x = tensor.matrix('features')
y = tensor.lmatrix('targets')
probs = mlp.apply(x)
cost = CategoricalCrossEntropy().apply(y.flatten(), probs)
error_rate = MisclassificationRate().apply(y.flatten(), probs)
cg = ComputationGraph([cost])
W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
cost = cost + .00005 * (W1 ** 2).sum() + .00005 * (W2 ** 2).sum()
cost.name = 'final_cost'
mnist_train = MNIST(("train",))
mnist_test = MNIST(("test",))
algorithm = GradientDescent(
cost=cost, parameters=cg.parameters,
step_rule=Scale(learning_rate=0.1))
extensions = [Timing(),
FinishAfter(after_n_epochs=num_epochs),
DataStreamMonitoring(
[cost, error_rate],
Flatten(
DataStream.default_stream(
mnist_test,
iteration_scheme=SequentialScheme(
mnist_test.num_examples, 500)),
which_sources=('features',)),
prefix="test"),
TrainingDataMonitoring(
[cost, error_rate,
aggregation.mean(algorithm.total_gradient_norm)],
prefix="train",
after_epoch=True),
Checkpoint(save_to),
Printing()]
if BLOCKS_EXTRAS_AVAILABLE:
extensions.append(Plot(
'MNIST example',
channels=[
['test_final_cost',
'test_misclassificationrate_apply_error_rate'],
['train_total_gradient_norm']]))
main_loop = MainLoop(
algorithm,
Flatten(
DataStream.default_stream(
mnist_train,
iteration_scheme=SequentialScheme(
mnist_train.num_examples, 50)),
which_sources=('features',)),
model=Model(cost),
extensions=extensions)
main_loop.run()
示例7: run
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def run():
streams = create_celeba_streams(training_batch_size=100,
monitoring_batch_size=500,
include_targets=True)
main_loop_stream = streams[0]
train_monitor_stream = streams[1]
valid_monitor_stream = streams[2]
cg, bn_dropout_cg = create_training_computation_graphs()
# Compute parameter updates for the batch normalization population
# statistics. They are updated following an exponential moving average.
pop_updates = get_batch_normalization_updates(bn_dropout_cg)
decay_rate = 0.05
extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
for p, m in pop_updates]
# Prepare algorithm
step_rule = Adam()
algorithm = GradientDescent(cost=bn_dropout_cg.outputs[0],
parameters=bn_dropout_cg.parameters,
step_rule=step_rule)
algorithm.add_updates(extra_updates)
# Prepare monitoring
cost = bn_dropout_cg.outputs[0]
cost.name = 'cost'
train_monitoring = DataStreamMonitoring(
[cost], train_monitor_stream, prefix="train",
before_first_epoch=False, after_epoch=False, after_training=True,
updates=extra_updates)
cost, accuracy = cg.outputs
cost.name = 'cost'
accuracy.name = 'accuracy'
monitored_quantities = [cost, accuracy]
valid_monitoring = DataStreamMonitoring(
monitored_quantities, valid_monitor_stream, prefix="valid",
before_first_epoch=False, after_epoch=False, every_n_epochs=5)
# Prepare checkpoint
checkpoint = Checkpoint(
'celeba_classifier.zip', every_n_epochs=5, use_cpickle=True)
extensions = [Timing(), FinishAfter(after_n_epochs=50), train_monitoring,
valid_monitoring, checkpoint, Printing(), ProgressBar()]
main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm,
extensions=extensions)
main_loop.run()
示例8: run
# 需要导入模块: from blocks import algorithms [as 别名]
# 或者: from blocks.algorithms import GradientDescent [as 别名]
def run(discriminative_regularization=True):
streams = create_celeba_streams(training_batch_size=100,
monitoring_batch_size=500,
include_targets=False)
main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3]
# Compute parameter updates for the batch normalization population
# statistics. They are updated following an exponential moving average.
rval = create_training_computation_graphs(discriminative_regularization)
cg, bn_cg, variance_parameters = rval
pop_updates = list(
set(get_batch_normalization_updates(bn_cg, allow_duplicates=True)))
decay_rate = 0.05
extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
for p, m in pop_updates]
model = Model(bn_cg.outputs[0])
selector = Selector(
find_bricks(
model.top_bricks,
lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp',
'decoder_convnet', 'decoder_mlp')))
parameters = list(selector.get_parameters().values()) + variance_parameters
# Prepare algorithm
step_rule = Adam()
algorithm = GradientDescent(cost=bn_cg.outputs[0],
parameters=parameters,
step_rule=step_rule)
algorithm.add_updates(extra_updates)
# Prepare monitoring
monitored_quantities_list = []
for graph in [bn_cg, cg]:
cost, kl_term, reconstruction_term = graph.outputs
cost.name = 'nll_upper_bound'
avg_kl_term = kl_term.mean(axis=0)
avg_kl_term.name = 'avg_kl_term'
avg_reconstruction_term = -reconstruction_term.mean(axis=0)
avg_reconstruction_term.name = 'avg_reconstruction_term'
monitored_quantities_list.append(
[cost, avg_kl_term, avg_reconstruction_term])
train_monitoring = DataStreamMonitoring(
monitored_quantities_list[0], train_monitor_stream, prefix="train",
updates=extra_updates, after_epoch=False, before_first_epoch=False,
every_n_epochs=5)
valid_monitoring = DataStreamMonitoring(
monitored_quantities_list[1], valid_monitor_stream, prefix="valid",
after_epoch=False, before_first_epoch=False, every_n_epochs=5)
# Prepare checkpoint
save_path = 'celeba_vae_{}regularization.zip'.format(
'' if discriminative_regularization else 'no_')
checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True)
extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring,
valid_monitoring, checkpoint, Printing(), ProgressBar()]
main_loop = MainLoop(data_stream=main_loop_stream,
algorithm=algorithm, extensions=extensions)
main_loop.run()