本文整理汇总了Python中bert.modeling.get_assignment_map_from_checkpoint方法的典型用法代码示例。如果您正苦于以下问题:Python modeling.get_assignment_map_from_checkpoint方法的具体用法?Python modeling.get_assignment_map_from_checkpoint怎么用?Python modeling.get_assignment_map_from_checkpoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bert.modeling
的用法示例。
在下文中一共展示了modeling.get_assignment_map_from_checkpoint方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _restore_checkpoint
# 需要导入模块: from bert import modeling [as 别名]
# 或者: from bert.modeling import get_assignment_map_from_checkpoint [as 别名]
def _restore_checkpoint(init_checkpoint):
"""Restore parameters from checkpoint."""
tvars = tf.trainable_variables()
(assignment_map,
_) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
示例2: get_assignment_map_from_checkpoint
# 需要导入模块: from bert import modeling [as 别名]
# 或者: from bert.modeling import get_assignment_map_from_checkpoint [as 别名]
def get_assignment_map_from_checkpoint(tvars, init_checkpoint,
load_only_bert=False):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\\d+$", name)
if m is not None:
name = m.group(1)
if load_only_bert and ("bert" not in name):
continue
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
assignment_map = collections.OrderedDict()
for x in init_vars:
(name, var) = (x[0], x[1])
if name not in name_to_variable:
continue
assignment_map[name] = name
initialized_variable_names[name] = 1
initialized_variable_names[name + ":0"] = 1
return (assignment_map, initialized_variable_names)
示例3: __init__
# 需要导入模块: from bert import modeling [as 别名]
# 或者: from bert.modeling import get_assignment_map_from_checkpoint [as 别名]
def __init__(self, config):
self.config = config
self.max_segment_len = config['max_segment_len']
self.max_span_width = config["max_span_width"]
self.genres = { g:i for i,g in enumerate(config["genres"]) }
self.subtoken_maps = {}
self.gold = {}
self.eval_data = None # Load eval data lazily.
self.bert_config = modeling.BertConfig.from_json_file(config["bert_config_file"])
self.tokenizer = tokenization.FullTokenizer(
vocab_file=config['vocab_file'], do_lower_case=False)
input_props = []
input_props.append((tf.int32, [None, None])) # input_ids.
input_props.append((tf.int32, [None, None])) # input_mask
input_props.append((tf.int32, [None])) # Text lengths.
input_props.append((tf.int32, [None, None])) # Speaker IDs.
input_props.append((tf.int32, [])) # Genre.
input_props.append((tf.bool, [])) # Is training.
input_props.append((tf.int32, [None])) # Gold starts.
input_props.append((tf.int32, [None])) # Gold ends.
input_props.append((tf.int32, [None])) # Cluster ids.
input_props.append((tf.int32, [None])) # Sentence Map
self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props]
dtypes, shapes = zip(*input_props)
queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes)
self.enqueue_op = queue.enqueue(self.queue_input_tensors)
self.input_tensors = queue.dequeue()
self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors)
# bert stuff
tvars = tf.trainable_variables()
assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, config['init_checkpoint'])
tf.train.init_from_checkpoint(config['init_checkpoint'], assignment_map)
print("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
# tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
# init_string)
print(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
num_train_steps = int(
self.config['num_docs'] * self.config['num_epochs'])
num_warmup_steps = int(num_train_steps * 0.1)
self.global_step = tf.train.get_or_create_global_step()
self.train_op = optimization.create_custom_optimizer(tvars,
self.loss, self.config['bert_learning_rate'], self.config['task_learning_rate'],
num_train_steps, num_warmup_steps, False, self.global_step, freeze=-1)
示例4: __init__
# 需要导入模块: from bert import modeling [as 别名]
# 或者: from bert.modeling import get_assignment_map_from_checkpoint [as 别名]
def __init__(self, config):
self.config = config
self.max_segment_len = config['max_segment_len']
self.max_span_width = config["max_span_width"]
self.genres = { g:i for i,g in enumerate(config["genres"]) }
self.subtoken_maps = {}
self.gold = {}
self.eval_data = None # Load eval data lazily.
self.bert_config = modeling.BertConfig.from_json_file(config["bert_config_file"])
self.tokenizer = tokenization.FullTokenizer(
vocab_file=config['vocab_file'], do_lower_case=False)
input_props = []
input_props.append((tf.int32, [None, None])) # input_ids.
input_props.append((tf.int32, [None, None])) # input_mask
input_props.append((tf.int32, [None])) # Text lengths.
input_props.append((tf.int32, [None, None])) # Speaker IDs.
input_props.append((tf.int32, [])) # Genre.
input_props.append((tf.bool, [])) # Is training.
input_props.append((tf.int32, [None])) # Gold starts.
input_props.append((tf.int32, [None])) # Gold ends.
input_props.append((tf.int32, [None])) # Cluster ids.
input_props.append((tf.int32, [None])) # Sentence Map
self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props]
dtypes, shapes = zip(*input_props)
queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes)
self.enqueue_op = queue.enqueue(self.queue_input_tensors)
self.input_tensors = queue.dequeue()
self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors)
# bert stuff
tvars = tf.trainable_variables()
# If you're using TF weights only, tf_checkpoint and init_checkpoint can be the same
# Get the assignment map from the tensorflow checkpoint. Depending on the extension, use TF/Pytorch to load weights.
assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, config['tf_checkpoint'])
init_from_checkpoint = tf.train.init_from_checkpoint if config['init_checkpoint'].endswith('ckpt') else load_from_pytorch_checkpoint
init_from_checkpoint(config['init_checkpoint'], assignment_map)
print("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
# tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
# init_string)
print(" name = %s, shape = %s%s" % (var.name, var.shape, init_string))
num_train_steps = int(
self.config['num_docs'] * self.config['num_epochs'])
num_warmup_steps = int(num_train_steps * 0.1)
self.global_step = tf.train.get_or_create_global_step()
self.train_op = optimization.create_custom_optimizer(tvars,
self.loss, self.config['bert_learning_rate'], self.config['task_learning_rate'],
num_train_steps, num_warmup_steps, False, self.global_step, freeze=-1,
task_opt=self.config['task_optimizer'], eps=config['adam_eps'])
示例5: __init__
# 需要导入模块: from bert import modeling [as 别名]
# 或者: from bert.modeling import get_assignment_map_from_checkpoint [as 别名]
def __init__(self, config):
self.config = config
self.subtoken_maps = {}
self.max_segment_len = config['max_segment_len']
self.max_span_width = config["max_span_width"]
self.genres = { g:i for i,g in enumerate(config["genres"]) }
self.eval_data = None # Load eval data lazily.
self.bert_config = modeling.BertConfig.from_json_file(config["bert_config_file"])
self.sep = 102
self.cls = 101
self.tokenizer = tokenization.FullTokenizer(
vocab_file=config['vocab_file'], do_lower_case=False)
input_props = []
input_props.append((tf.int32, [None, None])) # input_ids.
input_props.append((tf.int32, [None, None])) # input_mask
input_props.append((tf.int32, [None, None])) # input_ids.
input_props.append((tf.int32, [None, None])) # input_mask
input_props.append((tf.int32, [None])) # Text lengths.
input_props.append((tf.int32, [None, None])) # Speaker IDs.
input_props.append((tf.int32, [])) # Genre.
input_props.append((tf.bool, [])) # Is training.
input_props.append((tf.int32, [None])) # Gold starts.
input_props.append((tf.int32, [None])) # Gold ends.
input_props.append((tf.int32, [None])) # Cluster ids.
input_props.append((tf.int32, [None])) # Sentence Map
self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props]
dtypes, shapes = zip(*input_props)
queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes)
self.enqueue_op = queue.enqueue(self.queue_input_tensors)
self.input_tensors = queue.dequeue()
self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors)
# bert stuff
tvars = tf.trainable_variables()
assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, config['tf_checkpoint'])
init_from_checkpoint = tf.train.init_from_checkpoint if config['init_checkpoint'].endswith('ckpt') else load_from_pytorch_checkpoint
init_from_checkpoint(config['init_checkpoint'], assignment_map)
print("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
# tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
# init_string)
print(" name = %s, shape = %s%s" % (var.name, var.shape, init_string))
num_train_steps = int(
self.config['num_docs'] * self.config['num_epochs'])
num_warmup_steps = int(num_train_steps * 0.1)
self.global_step = tf.train.get_or_create_global_step()
self.train_op = optimization.create_custom_optimizer(tvars,
self.loss, self.config['bert_learning_rate'], self.config['task_learning_rate'],
num_train_steps, num_warmup_steps, False, self.global_step, freeze=-1)