本文整理汇总了Python中bbox.bbox_transform.bbox_pred方法的典型用法代码示例。如果您正苦于以下问题:Python bbox_transform.bbox_pred方法的具体用法?Python bbox_transform.bbox_pred怎么用?Python bbox_transform.bbox_pred使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bbox.bbox_transform
的用法示例。
在下文中一共展示了bbox_transform.bbox_pred方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: im_detect
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def im_detect(predictor, data_batch, data_names, scales, cfg):
output_all = predictor.predict(data_batch)
data_dict_all = [dict(zip(data_names, data_batch.data[i])) for i in xrange(len(data_batch.data))]
scores_all = []
pred_boxes_all = []
for output, data_dict, scale in zip(output_all, data_dict_all, scales):
if cfg.TEST.HAS_RPN:
rois = output['rois_output'].asnumpy()[:, 1:]
else:
rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:]
im_shape = data_dict['data'].shape
# save output
scores = output['cls_prob_reshape_output'].asnumpy()[0]
bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
# post processing
pred_boxes = bbox_pred(rois, bbox_deltas)
pred_boxes = clip_boxes(pred_boxes, im_shape[-2:])
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale
scores_all.append(scores)
pred_boxes_all.append(pred_boxes)
return zip(scores_all, pred_boxes_all, data_dict_all)
示例2: check_movements
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def check_movements(ims, bef_ims, aft_ims, processed_roidb, delta_bef_roi, delta_aft_roi):
save_name = '/home/wangshiyao/Documents/testdata/'+processed_roidb[0]['image'].split('/')[-1]
print 'saving images to '+save_name
boxes = processed_roidb[0]['boxes']
ims.squeeze().transpose(1, 2, 0).astype(np.int8)
bef_ims.squeeze().transpose(1, 2, 0).astype(np.int8)
aft_ims.squeeze().transpose(1, 2, 0).astype(np.int8)
delta_bef_roi = np.array(delta_bef_roi).transpose(1, 0, 2)
delta_aft_roi = np.array(delta_aft_roi).transpose(1, 0, 2)
for i in range(boxes.shape[0]):
cv2.rectangle(ims, (int(boxes[i][0]), int(boxes[i][1])),(int(boxes[i][2]), int(boxes[i][3])),(55, 255, 155),5)
bef_box = bbox_pred(boxes[i].reshape(1, -1), delta_bef_roi[i])
cv2.rectangle(bef_ims, (int(bef_box[0][0]), int(bef_box[0][1])),(int(bef_box[0][2]), int(bef_box[0][3])),(55, 255, 155),5)
aft_box = bbox_pred(boxes[i].reshape(1, -1), delta_aft_roi[i])
cv2.rectangle(aft_ims, (int(aft_box[0][0]), int(aft_box[0][1])),(int(aft_box[0][2]), int(aft_box[0][3])),(55, 255, 155),5)
imageio.imsave(save_name, ims)
imageio.imsave(save_name.split('.')[-2]+'_bef'+'.JPEG', bef_ims)
imageio.imsave(save_name.split('.')[-2]+'_aft'+'.JPEG', aft_ims)
示例3: im_detect
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def im_detect(predictor, data_batch, data_names, scales, cfg):
output_all = predictor.predict(data_batch)
data_dict_all = [dict(zip(data_names, idata)) for idata in data_batch.data]
scores_all = []
pred_boxes_all = []
for output, data_dict, scale in zip(output_all, data_dict_all, scales):
if cfg.TEST.HAS_RPN:
rois = output['rois_output'].asnumpy()[:, 1:]
else:
rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:]
im_shape = data_dict['data'].shape
# save output
scores = output['cls_prob_reshape_output'].asnumpy()[0]
bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
# post processing
pred_boxes = bbox_pred(rois, bbox_deltas)
pred_boxes = clip_boxes(pred_boxes, im_shape[-2:])
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale
scores_all.append(scores)
pred_boxes_all.append(pred_boxes)
return scores_all, pred_boxes_all, data_dict_all
示例4: list_arguments
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def list_arguments(self):
return ['cls_prob', 'bbox_pred', 'im_info']
示例5: im_batch_detect
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def im_batch_detect(predictor, data_batch, data_names, scales, cfg):
output_all = predictor.predict(data_batch)
data_dict_all = [dict(zip(data_names, data_batch.data[i])) for i in xrange(len(data_batch.data))]
scores_all = []
pred_boxes_all = []
for output, data_dict, scale in zip(output_all, data_dict_all, scales):
im_infos = data_dict['im_info'].asnumpy()
# save output
scores = output['cls_prob_reshape_output'].asnumpy()[0]
bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
rois = output['rois_output'].asnumpy()
for im_idx in xrange(im_infos.shape[0]):
bb_idxs = np.where(rois[:,0] == im_idx)[0]
im_shape = im_infos[im_idx, :2].astype(np.int)
# post processing
pred_boxes = bbox_pred(rois[bb_idxs, 1:], bbox_deltas[bb_idxs, :])
pred_boxes = clip_boxes(pred_boxes, im_shape)
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale[im_idx]
scores_all.append(scores[bb_idxs, :])
pred_boxes_all.append(pred_boxes)
return scores_all, pred_boxes_all, data_dict_all
示例6: im_detect
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def im_detect(predictor, data_batch, data_names, scales, cfg):
output_all = predictor.predict(data_batch)
data_dict_all = [dict(zip(data_names, data_batch.data[i])) for i in xrange(len(data_batch.data))]
scores_all = []
pred_boxes_all = []
for output, data_dict, scale in zip(output_all, data_dict_all, scales):
if cfg.TEST.HAS_RPN:
rois = output['rois_output'].asnumpy()[:, 1:]
else:
rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:]
im_shape = data_dict['data'].shape
# save output
scores = output['cls_prob_reshape_output'].asnumpy()[0]
bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
# post processing
pred_boxes = bbox_pred(rois, bbox_deltas)
pred_boxes = clip_boxes(pred_boxes, im_shape[-2:])
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale
scores_all.append(scores)
pred_boxes_all.append(pred_boxes)
if output_all[0].has_key('feat_conv_3x3_relu_output'):
feat = output_all[0]['feat_conv_3x3_relu_output']
else:
feat = None
return scores_all, pred_boxes_all, data_dict_all, feat
示例7: list_arguments
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def list_arguments(self):
return ['rois', 'bbox_pred', 'cls_prob', 'im_info']
示例8: im_detect
# 需要导入模块: from bbox import bbox_transform [as 别名]
# 或者: from bbox.bbox_transform import bbox_pred [as 别名]
def im_detect(predictor, data_batch, data_names, scales, cfg):
output_all = predictor.predict(data_batch)
data_dict_all = [dict(zip(data_names, idata)) for idata in data_batch.data]
scores_all = []
pred_boxes_all = []
for output, data_dict, scale in zip(output_all, data_dict_all, scales):
if cfg.TEST.HAS_RPN or cfg.network.ROIDispatch:
rois = output['rois_output'].asnumpy()[:, 1:]
else:
rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:]
im_shape = data_dict['data'].shape
# save output
if cfg.TEST.LEARN_NMS:
pred_boxes = output['learn_nms_sorted_bbox'].asnumpy()
# raw_scores = output['sorted_score_output'].asnumpy()
scores = output['nms_final_score_output'].asnumpy()
else:
scores = output['cls_prob_reshape_output'].asnumpy()[0]
bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
# post processing
pred_boxes = bbox_pred(rois, bbox_deltas)
pred_boxes = clip_boxes(pred_boxes, im_shape[-2:])
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale
scores_all.append(scores)
pred_boxes_all.append(pred_boxes)
return scores_all, pred_boxes_all, data_dict_all