本文整理汇总了Python中baselines.ppo1.pposgd_simple.learn方法的典型用法代码示例。如果您正苦于以下问题:Python pposgd_simple.learn方法的具体用法?Python pposgd_simple.learn怎么用?Python pposgd_simple.learn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类baselines.ppo1.pposgd_simple
的用法示例。
在下文中一共展示了pposgd_simple.learn方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import mlp_policy, pposgd_simple
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
mujoco_py.ignore_mujoco_warnings().__enter__()
workerseed = seed + 10000 * rank
set_global_seeds(workerseed)
env = make_robotics_env(env_id, workerseed, rank=rank)
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=256, num_hid_layers=3)
pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256,
gamma=0.99, lam=0.95, schedule='linear',
)
env.close()
示例2: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import mlp_policy, pposgd_simple
U.make_session(num_cpu=1).__enter__()
set_global_seeds(seed)
env = gym.make(env_id)
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
env = bench.Monitor(env, logger.get_dir())
env.seed(seed)
gym.logger.setLevel(logging.WARN)
pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
gamma=0.99, lam=0.95, schedule='linear',
)
env.close()
示例3: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import pposgd_simple, cnn_policy
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
env = wrap_deepmind(env)
env.seed(workerseed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=int(num_timesteps * 1.1),
timesteps_per_actorbatch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear'
)
env.close()
示例4: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import mlp_policy, pposgd_simple
U.make_session(num_cpu=1).__enter__()
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
env = make_mujoco_env(env_id, seed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
gamma=0.99, lam=0.95, schedule='linear',
)
env.close()
示例5: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import pposgd_simple, cnn_policy
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() if seed is not None else None
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
env = wrap_deepmind(env)
env.seed(workerseed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=int(num_timesteps * 1.1),
timesteps_per_actorbatch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear'
)
env.close()
示例6: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(num_timesteps, seed, model_path=None):
env_id = 'Humanoid-v2'
from baselines.ppo1 import mlp_policy, pposgd_simple
U.make_session(num_cpu=1).__enter__()
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
env = make_mujoco_env(env_id, seed)
# parameters below were the best found in a simple random search
# these are good enough to make humanoid walk, but whether those are
# an absolute best or not is not certain
env = RewScale(env, 0.1)
pi = pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=10,
optim_stepsize=3e-4,
optim_batchsize=64,
gamma=0.99,
lam=0.95,
schedule='linear',
)
env.close()
if model_path:
U.save_state(model_path)
return pi
示例7: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(num_timesteps, seed, model_path=None):
env_id = 'Humanoid-v2'
from baselines.ppo1 import mlp_policy, pposgd_simple
U.make_session(num_cpu=1).__enter__()
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
env = make_mujoco_env(env_id, seed)
# parameters below were the best found in a simple random search
# these are good enough to make humanoid walk, but whether those are
# an absolute best or not is not certain
env = RewScale(env, 0.1)
pi = pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=10,
optim_stepsize=3e-4,
optim_batchsize=64,
gamma=0.99,
lam=0.95,
schedule='linear',
)
env.close()
if model_path:
U.save_state(model_path)
return pi
示例8: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(num_timesteps, seed, model_path=None):
env_id = 'Humanoid-v2'
from baselines.ppo1 import mlp_policy, pposgd_simple
U.make_session(num_cpu=1).__enter__()
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
env = make_mujoco_env(env_id, seed)
# parameters below were the best found in a simple random search
# these are good enough to make humanoid walk, but whether those are
# an absolute best or not is not certain
env = RewScale(env, 0.1)
logger.log("NOTE: reward will be scaled by a factor of 10 in logged stats. Check the monitor for unscaled reward.")
pi = pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.1, entcoeff=0.0,
optim_epochs=10,
optim_stepsize=1e-4,
optim_batchsize=64,
gamma=0.99,
lam=0.95,
schedule='constant',
)
env.close()
if model_path:
U.save_state(model_path)
return pi
示例9: train
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import pposgd_simple, cnn_policy
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
env = wrap_deepmind(env)
env.seed(workerseed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=int(num_timesteps * 1.1),
timesteps_per_actorbatch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear'
)
env.close()
示例10: main
# 需要导入模块: from baselines.ppo1 import pposgd_simple [as 别名]
# 或者: from baselines.ppo1.pposgd_simple import learn [as 别名]
def main():
# use fixed random state
rand_state = np.random.RandomState(1).get_state()
np.random.set_state(rand_state)
tf_set_seeds(np.random.randint(1, 2**31 - 1))
#Create Asynchronous Simulation of InvertedDoublePendulum-v2 mujoco environment.
env = DoubleInvertedPendulumEnv(agent_dt=0.005,
sensor_dt=[0.01, 0.0033333],
is_render=False,
random_state=rand_state
)
# Start environment processes
env.start()
# Create baselines ppo policy function
sess = U.single_threaded_session()
sess.__enter__()
def policy_fn(name, ob_space, ac_space):
return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
# create and start plotting process
plot_running = Value('i', 1)
shared_returns = Manager().dict({"write_lock": False,
"episodic_returns": [],
"episodic_lengths": [], })
# Plotting process
pp = Process(target=plot_returns, args=(env, 2048, shared_returns, plot_running))
pp.start()
# Create callback function for logging data from baselines PPO learn
kindred_callback = create_callback(shared_returns)
# Train baselines PPO
learn(env,
policy_fn,
max_timesteps=1e6,
timesteps_per_actorbatch=2048,
clip_param=0.2,
entcoeff=0.0,
optim_epochs=10,
optim_stepsize=0.0001,
optim_batchsize=64,
gamma=0.995,
lam=0.995,
schedule="linear",
callback=kindred_callback,
)
# Safely terminate plotter process
plot_running.value = 0 # shutdown ploting process
time.sleep(2)
pp.join()
# Shutdown the environment
env.close()