当前位置: 首页>>代码示例>>Python>>正文


Python logger.scoped_configure方法代码示例

本文整理汇总了Python中baselines.logger.scoped_configure方法的典型用法代码示例。如果您正苦于以下问题:Python logger.scoped_configure方法的具体用法?Python logger.scoped_configure怎么用?Python logger.scoped_configure使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.logger的用法示例。


在下文中一共展示了logger.scoped_configure方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_mpi_weighted_mean

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import scoped_configure [as 别名]
def test_mpi_weighted_mean():
    comm = MPI.COMM_WORLD
    with logger.scoped_configure(comm=comm):
        if comm.rank == 0:
            name2valcount = {'a' : (10, 2), 'b' : (20,3)}
        elif comm.rank == 1:
            name2valcount = {'a' : (19, 1), 'c' : (42,3)}
        else:
            raise NotImplementedError
        d = mpi_util.mpi_weighted_mean(comm, name2valcount)
        correctval = {'a' : (10 * 2 + 19) / 3.0, 'b' : 20, 'c' : 42}
        if comm.rank == 0:
            assert d == correctval, '{} != {}'.format(d, correctval)

        for name, (val, count) in name2valcount.items():
            for _ in range(count):
                logger.logkv_mean(name, val)
        d2 = logger.dumpkvs()
        if comm.rank == 0:
            assert d2 == correctval 
开发者ID:openai,项目名称:baselines,代码行数:22,代码来源:test_mpi_util.py

示例2: __init__

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import scoped_configure [as 别名]
def __init__(self, env_fns, spaces=None):
        """
        If you don't specify observation_space, we'll have to create a dummy
        environment to get it.
        """
        if spaces:
            observation_space, action_space = spaces
        else:
            logger.log('Creating dummy env object to get spaces')
            with logger.scoped_configure(format_strs=[]):
                dummy = env_fns[0]()
                observation_space, action_space = dummy.observation_space, dummy.action_space
                dummy.close()
                del dummy
        VecEnv.__init__(self, len(env_fns), observation_space, action_space)
        self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space)
        self.obs_bufs = [
            {k: Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
            for _ in env_fns]
        self.parent_pipes = []
        self.procs = []
        for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
            wrapped_fn = CloudpickleWrapper(env_fn)
            parent_pipe, child_pipe = Pipe()
            proc = Process(target=_subproc_worker,
                           args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
            proc.daemon = True
            self.procs.append(proc)
            self.parent_pipes.append(parent_pipe)
            proc.start()
            child_pipe.close()
        self.waiting_step = False
        self.viewer = None 
开发者ID:MaxSobolMark,项目名称:HardRLWithYoutube,代码行数:35,代码来源:shmem_vec_env.py

示例3: __init__

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import scoped_configure [as 别名]
def __init__(self, env_fns, spaces=None, context='spawn'):
        """
        If you don't specify observation_space, we'll have to create a dummy
        environment to get it.
        """
        ctx = mp.get_context(context)
        if spaces:
            observation_space, action_space = spaces
        else:
            logger.log('Creating dummy env object to get spaces')
            with logger.scoped_configure(format_strs=[]):
                dummy = env_fns[0]()
                observation_space, action_space = dummy.observation_space, dummy.action_space
                dummy.close()
                del dummy
        VecEnv.__init__(self, len(env_fns), observation_space, action_space)
        self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space)
        self.obs_bufs = [
            {k: ctx.Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
            for _ in env_fns]
        self.parent_pipes = []
        self.procs = []
        with clear_mpi_env_vars():
            for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
                wrapped_fn = CloudpickleWrapper(env_fn)
                parent_pipe, child_pipe = ctx.Pipe()
                proc = ctx.Process(target=_subproc_worker,
                            args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
                proc.daemon = True
                self.procs.append(proc)
                self.parent_pipes.append(parent_pipe)
                proc.start()
                child_pipe.close()
        self.waiting_step = False
        self.viewer = None 
开发者ID:openai,项目名称:baselines,代码行数:37,代码来源:shmem_vec_env.py


注:本文中的baselines.logger.scoped_configure方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。