当前位置: 首页>>代码示例>>Python>>正文


Python logger.record_tabular方法代码示例

本文整理汇总了Python中baselines.logger.record_tabular方法的典型用法代码示例。如果您正苦于以下问题:Python logger.record_tabular方法的具体用法?Python logger.record_tabular怎么用?Python logger.record_tabular使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.logger的用法示例。


在下文中一共展示了logger.record_tabular方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def fit(self, paths, targvals):
        X = np.concatenate([self._preproc(p) for p in paths])
        y = np.concatenate(targvals)
        logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y))
        for _ in range(25): self.do_update(X, y)
        logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y)) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:8,代码来源:value_functions.py

示例2: main

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def main(policy_file, seed, n_test_rollouts, render):
    set_global_seeds(seed)

    # Load policy.
    with open(policy_file, 'rb') as f:
        policy = pickle.load(f)
    env_name = policy.info['env_name']

    # Prepare params.
    params = config.DEFAULT_PARAMS
    if env_name in config.DEFAULT_ENV_PARAMS:
        params.update(config.DEFAULT_ENV_PARAMS[env_name])  # merge env-specific parameters in
    params['env_name'] = env_name
    params = config.prepare_params(params)
    config.log_params(params, logger=logger)

    dims = config.configure_dims(params)

    eval_params = {
        'exploit': True,
        'use_target_net': params['test_with_polyak'],
        'compute_Q': True,
        'rollout_batch_size': 1,
        'render': bool(render),
    }

    for name in ['T', 'gamma', 'noise_eps', 'random_eps']:
        eval_params[name] = params[name]
    
    evaluator = RolloutWorker(params['make_env'], policy, dims, logger, **eval_params)
    evaluator.seed(seed)

    # Run evaluation.
    evaluator.clear_history()
    for _ in range(n_test_rollouts):
        evaluator.generate_rollouts()

    # record logs
    for key, val in evaluator.logs('test'):
        logger.record_tabular(key, np.mean(val))
    logger.dump_tabular() 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:43,代码来源:play.py

示例3: call

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def call(self, on_policy):
        runner, model, buffer, steps = self.runner, self.model, self.buffer, self.steps
        if on_policy:
            enc_obs, obs, actions, rewards, mus, dones, masks = runner.run()
            self.episode_stats.feed(rewards, dones)
            if buffer is not None:
                buffer.put(enc_obs, actions, rewards, mus, dones, masks)
        else:
            # get obs, actions, rewards, mus, dones from buffer.
            obs, actions, rewards, mus, dones, masks = buffer.get()

        # reshape stuff correctly
        obs = obs.reshape(runner.batch_ob_shape)
        actions = actions.reshape([runner.nbatch])
        rewards = rewards.reshape([runner.nbatch])
        mus = mus.reshape([runner.nbatch, runner.nact])
        dones = dones.reshape([runner.nbatch])
        masks = masks.reshape([runner.batch_ob_shape[0]])

        names_ops, values_ops = model.train(obs, actions, rewards, dones, mus, model.initial_state, masks, steps)

        if on_policy and (int(steps/runner.nbatch) % self.log_interval == 0):
            logger.record_tabular("total_timesteps", steps)
            logger.record_tabular("fps", int(steps/(time.time() - self.tstart)))
            # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, not just at the terminal state.
            # Thus, this is mean until end of life, not end of episode.
            # For true episode rewards, see the monitor files in the log folder.
            logger.record_tabular("mean_episode_length", self.episode_stats.mean_length())
            logger.record_tabular("mean_episode_reward", self.episode_stats.mean_reward())
            for name, val in zip(names_ops, values_ops):
                logger.record_tabular(name, float(val))
            logger.dump_tabular() 
开发者ID:MaxSobolMark,项目名称:HardRLWithYoutube,代码行数:34,代码来源:acer.py

示例4: learn

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close() 
开发者ID:bowenliu16,项目名称:rl_graph_generation,代码行数:30,代码来源:a2c.py

示例5: main

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def main(policy_file, seed, n_test_rollouts, render):
    set_global_seeds(seed)

    # Load policy.
    with open(policy_file, 'rb') as f:
        policy = pickle.load(f)
    env_name = policy.info['env_name']

    # Prepare params.
    params = config.DEFAULT_PARAMS
    if env_name in config.DEFAULT_ENV_PARAMS:
        params.update(config.DEFAULT_ENV_PARAMS[env_name])  # merge env-specific parameters in
    params['env_name'] = env_name
    params = config.prepare_params(params)
    config.log_params(params, logger=logger)

    dims = config.configure_dims(params)

    eval_params = {
        'exploit': True,
        'use_target_net': params['test_with_polyak'],
        'compute_Q': True,
        'rollout_batch_size': 1,
        'render': bool(render),
    }

    for name in ['T', 'gamma', 'noise_eps', 'random_eps']:
        eval_params[name] = params[name]

    evaluator = RolloutWorker(params['make_env'], policy, dims, logger, **eval_params)
    evaluator.seed(seed)

    # Run evaluation.
    evaluator.clear_history()
    for _ in range(n_test_rollouts):
        evaluator.generate_rollouts()

    # record logs
    for key, val in evaluator.logs('test'):
        logger.record_tabular(key, np.mean(val))
    logger.dump_tabular() 
开发者ID:hiwonjoon,项目名称:ICML2019-TREX,代码行数:43,代码来源:play.py

示例6: call

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def call(self, on_policy):
        runner, model, buffer, steps = self.runner, self.model, self.buffer, self.steps
        if on_policy:
            enc_obs, obs, actions, rewards, mus, dones, masks = runner.run()
            self.episode_stats.feed(rewards, dones)
            if buffer is not None:
                buffer.put(enc_obs, actions, rewards, mus, dones, masks)
        else:
            # get obs, actions, rewards, mus, dones from buffer.
            obs, actions, rewards, mus, dones, masks = buffer.get()


        # reshape stuff correctly
        obs = obs.reshape(runner.batch_ob_shape)
        actions = actions.reshape([runner.nbatch])
        rewards = rewards.reshape([runner.nbatch])
        mus = mus.reshape([runner.nbatch, runner.nact])
        dones = dones.reshape([runner.nbatch])
        masks = masks.reshape([runner.batch_ob_shape[0]])

        names_ops, values_ops = model.train(obs, actions, rewards, dones, mus, model.initial_state, masks, steps)

        if on_policy and (int(steps/runner.nbatch) % self.log_interval == 0):
            logger.record_tabular("total_timesteps", steps)
            logger.record_tabular("fps", int(steps/(time.time() - self.tstart)))
            # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, not just at the terminal state.
            # Thus, this is mean until end of life, not end of episode.
            # For true episode rewards, see the monitor files in the log folder.
            logger.record_tabular("mean_episode_length", self.episode_stats.mean_length())
            logger.record_tabular("mean_episode_reward", self.episode_stats.mean_reward())
            for name, val in zip(names_ops, values_ops):
                logger.record_tabular(name, float(val))
            logger.dump_tabular() 
开发者ID:hiwonjoon,项目名称:ICML2019-TREX,代码行数:35,代码来源:acer.py

示例7: log_scalars

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def log_scalars(writer, step):
    def log_scalar(name, value):
        logger.record_tabular(name, value)

        summary = tf.Summary(value=[tf.Summary.Value(tag=name,
                                                         simple_value=value)])
        writer.add_summary(summary, step)
    return log_scalar 
开发者ID:vik-goel,项目名称:MOREL,代码行数:10,代码来源:a2c.py

示例8: log

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def log(self):
        if self.t > 0 and self.print_freq is not None and len(self.episode_rewards) % self.print_freq == 0:
            mean_100ep_reward = np.mean(self.episode_rewards[-100:])
            num_episodes = len(self.episode_rewards)

            logger.record_tabular('steps', self.t)
            logger.record_tabular('episodes', num_episodes)
            logger.record_tabular('mean 100 episode reward', '{:.3f}'.format(mean_100ep_reward))
            logger.record_tabular('exploration (target)', '{:.3f} %'.format(100 * self.exploration_schedule.value(self.t)))
            logger.record_tabular('exploration (current)', '{:.3f} %'.format(100 * (1.0 - self.greedy_freq)))
            logger.dump_tabular() 
开发者ID:fabiopardo,项目名称:qmap,代码行数:13,代码来源:q_map_dqn_agent.py

示例9: learn

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close()
    return model 
开发者ID:junhyukoh,项目名称:self-imitation-learning,代码行数:30,代码来源:a2c.py

示例10: learn

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, sil_update=4, sil_beta=0.0):
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, sil_update=sil_update, sil_beta=sil_beta)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    episode_stats = EpisodeStats(nsteps, nenvs)
    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values, raw_rewards = runner.run()
        episode_stats.feed(raw_rewards, masks)
        policy_loss, value_loss, policy_entropy, v_avg = model.train(obs, states, rewards, masks, actions, values)
        sil_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train()
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("episode_reward", episode_stats.mean_reward())
            logger.record_tabular("best_episode_reward", float(model.sil.get_best_reward()))
            if sil_update > 0:
                logger.record_tabular("sil_num_episodes", float(model.sil.num_episodes()))
                logger.record_tabular("sil_valid_samples", float(sil_samples))
                logger.record_tabular("sil_steps", float(model.sil.num_steps()))
            logger.dump_tabular()
    env.close()
    return model 
开发者ID:junhyukoh,项目名称:self-imitation-learning,代码行数:39,代码来源:a2c_sil.py

示例11: learn

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def learn(policy, env, seed, nsteps=5, nstack=4, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    num_procs = len(env.remotes) # HACK
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close() 
开发者ID:cxxgtxy,项目名称:deeprl-baselines,代码行数:31,代码来源:a2c.py

示例12: learn

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import record_tabular [as 别名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), v_mix_coef=0.5, ent_coef=0.01, max_grad_norm=0.5,
          lr_alpha=7e-4, lr_beta=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100,
          v_ex_coef=1.0, r_ex_coef=0.0, r_in_coef=1.0):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef,
                  v_ex_coef=v_ex_coef, max_grad_norm=max_grad_norm, lr_alpha=lr_alpha, lr_beta=lr_beta,
                  alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule,
                  v_mix_coef=v_mix_coef, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef)

    nbatch = nenvs*nsteps
    tstart = time.time()
    epinfobuf = deque(maxlen=100)
    eprexbuf = deque(maxlen=100)
    eprinbuf = deque(maxlen=100)
    eplenbuf = deque(maxlen=100)
    for update in range(1, total_timesteps//nbatch+1):
        obs, ac, policy_states, r_in, r_ex, ret_ex, ret_mix, \
        v_ex, v_mix, last_v_ex, last_v_mix, masks, dones, \
        epinfo, ep_r_ex, ep_r_in, ep_len = runner.run()
        dis_v_mix_last = np.zeros([nbatch], np.float32)
        coef_mat = np.zeros([nbatch, nbatch], np.float32)
        for i in range(nbatch):
            dis_v_mix_last[i] = gamma ** (nsteps - i % nsteps) * last_v_mix[i // nsteps]
            coef = 1.0
            for j in range(i, nbatch):
                if j > i and j % nsteps == 0:
                    break
                coef_mat[i][j] = coef
                coef *= gamma
                if dones[j]:
                    dis_v_mix_last[i] = 0
                    break
        entropy = model.train(obs, policy_states[0], masks, ac, r_ex, ret_ex, v_ex, v_mix, dis_v_mix_last, coef_mat)

        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        epinfobuf.extend(epinfo)
        eprexbuf.extend(ep_r_ex)
        eprinbuf.extend(ep_r_in)
        eplenbuf.extend(ep_len)
        if update % log_interval == 0 or update == 1:
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("entropy", float(entropy))
            v_ex_ev = explained_variance(v_ex, ret_ex)
            logger.record_tabular("v_ex_ev", float(v_ex_ev))
            v_mix_ev = explained_variance(v_mix, ret_mix)
            logger.record_tabular("v_mix_ev", float(v_mix_ev))
            logger.record_tabular("gamescoremean", safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.record_tabular("gamelenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.dump_tabular()
    env.close() 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:61,代码来源:a2c.py


注:本文中的baselines.logger.record_tabular方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。