当前位置: 首页>>代码示例>>Python>>正文


Python logger.log方法代码示例

本文整理汇总了Python中baselines.logger.log方法的典型用法代码示例。如果您正苦于以下问题:Python logger.log方法的具体用法?Python logger.log怎么用?Python logger.log使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.logger的用法示例。


在下文中一共展示了logger.log方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: argsparser

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def argsparser():
    parser = argparse.ArgumentParser("Tensorflow Implementation of Behavior Cloning")
    parser.add_argument('--env_id', help='environment ID', default='Hopper-v1')
    parser.add_argument('--seed', help='RNG seed', type=int, default=0)
    parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz')
    parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint')
    parser.add_argument('--log_dir', help='the directory to save log file', default='log')
    #  Mujoco Dataset Configuration
    parser.add_argument('--traj_limitation', type=int, default=-1)
    # Network Configuration (Using MLP Policy)
    parser.add_argument('--policy_hidden_size', type=int, default=100)
    # for evaluatation
    boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate')
    boolean_flag(parser, 'save_sample', default=False, help='save the trajectories or not')
    parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=1e5)
    return parser.parse_args() 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:18,代码来源:behavior_clone.py

示例2: maybe_save_model

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def maybe_save_model(savedir, container, state):
    """This function checkpoints the model and state of the training algorithm."""
    if savedir is None:
        return
    start_time = time.time()
    model_dir = "model-{}".format(state["num_iters"])
    U.save_state(os.path.join(savedir, model_dir, "saved"))
    if container is not None:
        container.put(os.path.join(savedir, model_dir), model_dir)
    relatively_safe_pickle_dump(state, os.path.join(savedir, 'training_state.pkl.zip'), compression=True)
    if container is not None:
        container.put(os.path.join(savedir, 'training_state.pkl.zip'), 'training_state.pkl.zip')
    relatively_safe_pickle_dump(state["monitor_state"], os.path.join(savedir, 'monitor_state.pkl'))
    if container is not None:
        container.put(os.path.join(savedir, 'monitor_state.pkl'), 'monitor_state.pkl')
    logger.log("Saved model in {} seconds\n".format(time.time() - start_time)) 
开发者ID:AdamStelmaszczyk,项目名称:learning2run,代码行数:18,代码来源:train.py

示例3: maybe_load_model

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def maybe_load_model(savedir, container):
    """Load model if present at the specified path."""
    if savedir is None:
        return

    state_path = os.path.join(os.path.join(savedir, 'training_state.pkl.zip'))
    if container is not None:
        logger.log("Attempting to download model from Azure")
        found_model = container.get(savedir, 'training_state.pkl.zip')
    else:
        found_model = os.path.exists(state_path)
    if found_model:
        state = pickle_load(state_path, compression=True)
        model_dir = "model-{}".format(state["num_iters"])
        if container is not None:
            container.get(savedir, model_dir)
        U.load_state(os.path.join(savedir, model_dir, "saved"))
        logger.log("Loaded models checkpoint at {} iterations".format(state["num_iters"]))
        return state 
开发者ID:AdamStelmaszczyk,项目名称:learning2run,代码行数:21,代码来源:train.py

示例4: main

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def main():
    parser = mujoco_arg_parser()
    parser.add_argument('--lr', type=float, default=3e-4, help="Learning rate")
    parser.add_argument('--sil-update', type=float, default=10, help="Number of updates per iteration")
    parser.add_argument('--sil-value', type=float, default=0.01, help="Weight for value update")
    parser.add_argument('--sil-alpha', type=float, default=0.6, help="Alpha for prioritized replay")
    parser.add_argument('--sil-beta', type=float, default=0.1, help="Beta for prioritized replay")

    args = parser.parse_args()
    logger.configure()
    model, env = train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
            lr=args.lr,
            sil_update=args.sil_update, sil_value=args.sil_value,
            sil_alpha=args.sil_alpha, sil_beta=args.sil_beta)

    if args.play:
        logger.log("Running trained model")
        obs = np.zeros((env.num_envs,) + env.observation_space.shape)
        obs[:] = env.reset()
        while True:
            actions = model.step(obs)[0]
            obs[:]  = env.step(actions)[0]
            env.render() 
开发者ID:junhyukoh,项目名称:self-imitation-learning,代码行数:25,代码来源:run_mujoco_sil.py

示例5: argsparser

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def argsparser():
    parser = argparse.ArgumentParser("Tensorflow Implementation of Behavior Cloning")
    parser.add_argument('--env_id', help='environment ID', default='Hopper-v2')
    parser.add_argument('--seed', help='RNG seed', type=int, default=0)
    parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz')
    parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint')
    parser.add_argument('--log_dir', help='the directory to save log file', default='log')
    #  Mujoco Dataset Configuration
    parser.add_argument('--traj_limitation', type=int, default=-1)
    # Network Configuration (Using MLP Policy)
    parser.add_argument('--policy_hidden_size', type=int, default=100)
    # for evaluatation
    boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate')
    boolean_flag(parser, 'save_sample', default=False, help='save the trajectories or not')
    parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=1e5)
    return parser.parse_args() 
开发者ID:openai,项目名称:baselines,代码行数:18,代码来源:behavior_clone.py

示例6: maybe_save_model

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def maybe_save_model(savedir, container, state):
    """This function checkpoints the model and state of the training algorithm."""
    if savedir is None:
        return
    start_time = time.time()
    model_dir = "model-{}".format(state["num_iters"])
    U.save_state(os.path.join(savedir, model_dir, "saved"))
    if container is not None:
        container.put(os.path.join(savedir, model_dir), model_dir)

    # requires 32gb of memory for this to work
    relatively_safe_pickle_dump(state, os.path.join(savedir, 'training_state.pkl.zip'), compression=True)
    if container is not None:
        container.put(os.path.join(savedir, 'training_state.pkl.zip'), 'training_state.pkl.zip')
    relatively_safe_pickle_dump(state["monitor_state"], os.path.join(savedir, 'monitor_state.pkl'))
    if container is not None:
        container.put(os.path.join(savedir, 'monitor_state.pkl'), 'monitor_state.pkl')
    logger.log("Saved model in {} seconds\n".format(time.time() - start_time)) 
开发者ID:Silvicek,项目名称:distributional-dqn,代码行数:20,代码来源:train_atari.py

示例7: log_info

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def log_info(self):
        logger.log("Total trajectorues: %d" % self.num_traj)
        logger.log("Total transitions: %d" % self.num_transition)
        logger.log("Average returns: %f" % self.avg_ret)
        logger.log("Std for returns: %f" % self.std_ret) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:7,代码来源:mujoco_dset.py

示例8: learn

# 需要导入模块: from baselines import logger [as 别名]
# 或者: from baselines.logger import log [as 别名]
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4,
          adam_epsilon=1e-5, optim_stepsize=3e-4,
          ckpt_dir=None, log_dir=None, task_name=None,
          verbose=False):

    val_per_iter = int(max_iters/10)
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)  # Construct network for new policy
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    loss = tf.reduce_mean(tf.square(ac-pi.ac))
    var_list = pi.get_trainable_variables()
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)])

    U.initialize()
    adam.sync()
    logger.log("Pretraining with Behavior Cloning...")
    for iter_so_far in tqdm(range(int(max_iters))):
        ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train')
        train_loss, g = lossandgrad(ob_expert, ac_expert, True)
        adam.update(g, optim_stepsize)
        if verbose and iter_so_far % val_per_iter == 0:
            ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
            val_loss, _ = lossandgrad(ob_expert, ac_expert, True)
            logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss))

    if ckpt_dir is None:
        savedir_fname = tempfile.TemporaryDirectory().name
    else:
        savedir_fname = osp.join(ckpt_dir, task_name)
    U.save_state(savedir_fname, var_list=pi.get_variables())
    return savedir_fname 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:38,代码来源:behavior_clone.py


注:本文中的baselines.logger.log方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。