本文整理汇总了Python中baselines.common.tf_util.single_threaded_session方法的典型用法代码示例。如果您正苦于以下问题:Python tf_util.single_threaded_session方法的具体用法?Python tf_util.single_threaded_session怎么用?Python tf_util.single_threaded_session使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类baselines.common.tf_util
的用法示例。
在下文中一共展示了tf_util.single_threaded_session方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
import baselines.common.tf_util as U
sess = U.single_threaded_session()
sess.__enter__()
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
def policy_fn(name, ob_space, ac_space):
return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=32, num_hid_layers=2)
env = make_mujoco_env(env_id, workerseed)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
max_timesteps=num_timesteps, gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
env.close()
示例2: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import mlp_policy, pposgd_simple
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
mujoco_py.ignore_mujoco_warnings().__enter__()
workerseed = seed + 10000 * rank
set_global_seeds(workerseed)
env = make_robotics_env(env_id, workerseed, rank=rank)
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=256, num_hid_layers=3)
pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256,
gamma=0.99, lam=0.95, schedule='linear',
)
env.close()
示例3: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
whoami = mpi_fork(num_cpu)
if whoami == "parent":
return
import baselines.common.tf_util as U
logger.session().__enter__()
sess = U.single_threaded_session()
sess.__enter__()
rank = MPI.COMM_WORLD.Get_rank()
if rank != 0:
logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = gym.make(env_id)
def policy_fn(name, ob_space, ac_space):
return MlpPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space,
hid_size=32, num_hid_layers=2)
env = bench.Monitor(env, osp.join(logger.get_dir(), "%i.monitor.json" % rank))
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
max_timesteps=num_timesteps, gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
env.close()
示例4: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
import baselines.common.tf_util as U
sess = U.single_threaded_session()
sess.__enter__()
rank = MPI.COMM_WORLD.Get_rank()
if rank != 0:
logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = gym.make(env_id)
def policy_fn(name, ob_space, ac_space):
return MlpPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space,
hid_size=32, num_hid_layers=2)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
max_timesteps=num_timesteps, gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
env.close()
示例5: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.trpo_mpi.nosharing_cnn_policy import CnnPolicy
from baselines.trpo_mpi import trpo_mpi
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return CnnPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space)
env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
env = wrap_deepmind(env)
env.seed(workerseed)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=512, max_kl=0.001, cg_iters=10, cg_damping=1e-3,
max_timesteps=int(num_timesteps * 1.1), gamma=0.98, lam=1.0, vf_iters=3, vf_stepsize=1e-4, entcoeff=0.00)
env.close()
示例6: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import pposgd_simple, cnn_policy
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
env = wrap_deepmind(env)
env.seed(workerseed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=int(num_timesteps * 1.1),
timesteps_per_actorbatch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear'
)
env.close()
示例7: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import pposgd_simple, cnn_policy
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() if seed is not None else None
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
env = wrap_deepmind(env)
env.seed(workerseed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=int(num_timesteps * 1.1),
timesteps_per_actorbatch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear'
)
env.close()
示例8: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(args,seed,writer=None):
from baselines.ppo1 import pposgd_simple_gcn, gcn_policy
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
if args.env=='molecule':
env = gym.make('molecule-v0')
env.init(data_type=args.dataset,logp_ratio=args.logp_ratio,qed_ratio=args.qed_ratio,sa_ratio=args.sa_ratio,reward_step_total=args.reward_step_total,is_normalize=args.normalize_adj,reward_type=args.reward_type,reward_target=args.reward_target,has_feature=bool(args.has_feature),is_conditional=bool(args.is_conditional),conditional=args.conditional,max_action=args.max_action,min_action=args.min_action) # remember call this after gym.make!!
elif args.env=='graph':
env = GraphEnv()
env.init(reward_step_total=args.reward_step_total,is_normalize=args.normalize_adj,dataset=args.dataset) # remember call this after gym.make!!
print(env.observation_space)
def policy_fn(name, ob_space, ac_space):
return gcn_policy.GCNPolicy(name=name, ob_space=ob_space, ac_space=ac_space, atom_type_num=env.atom_type_num,args=args)
env.seed(workerseed)
pposgd_simple_gcn.learn(args,env, policy_fn,
max_timesteps=args.num_steps,
timesteps_per_actorbatch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=8, optim_stepsize=args.lr, optim_batchsize=32,
gamma=1, lam=0.95,
schedule='linear', writer=writer
)
env.close()
示例9: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed, num_cpu):
from baselines.trpo_mpi.nosharing_cnn_policy import CnnPolicy
from baselines.trpo_mpi import trpo_mpi
import baselines.common.tf_util as U
whoami = mpi_fork(num_cpu)
if whoami == "parent":
return
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
logger.session().__enter__()
if rank != 0:
logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = gym.make(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return CnnPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space)
env = bench.Monitor(env, osp.join(logger.get_dir(), "%i.monitor.json"%rank))
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
env = wrap_train(env)
num_timesteps /= 4 # because we're wrapping the envs to do frame skip
env.seed(workerseed)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=512, max_kl=0.001, cg_iters=10, cg_damping=1e-3,
max_timesteps=num_timesteps, gamma=0.98, lam=1.0, vf_iters=3, vf_stepsize=1e-4, entcoeff=0.00)
env.close()
示例10: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(env_id, num_timesteps, seed, num_cpu):
from baselines.pposgd import pposgd_simple, cnn_policy
import baselines.common.tf_util as U
whoami = mpi_fork(num_cpu)
if whoami == "parent": return
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
logger.session().__enter__()
if rank != 0: logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = gym.make(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
env = bench.Monitor(env, osp.join(logger.get_dir(), "%i.monitor.json" % rank))
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
env = wrap_train(env)
num_timesteps /= 4 # because we're wrapping the envs to do frame skip
env.seed(workerseed)
pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_batch=256,
clip_param=0.2, entcoeff=0.01,
optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear'
)
env.close()
示例11: train
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import single_threaded_session [as 别名]
def train(num_timesteps, seed):
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'configs',
'ant_gibson_flagrun.yaml')
print(config_file)
env = AntGibsonFlagRunEnv(config = config_file)
def mlp_policy_fn(name, sensor_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=sensor_space, ac_space=ac_space, hid_size=64, num_hid_layers=2)
env.seed(workerseed)
gym.logger.setLevel(logging.WARN)
pposgd_sensor.learn(env, mlp_policy_fn,
max_timesteps=int(num_timesteps * 1.1 * 5),
timesteps_per_actorbatch=6000,
clip_param=0.2, entcoeff=0.00,
optim_epochs=4, optim_stepsize=1e-4, optim_batchsize=64,
gamma=0.99, lam=0.95,
schedule='linear',
save_per_acts=500
)
env.close()