本文整理汇总了Python中baselines.common.tf_util.function方法的典型用法代码示例。如果您正苦于以下问题:Python tf_util.function方法的具体用法?Python tf_util.function怎么用?Python tf_util.function使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类baselines.common.tf_util
的用法示例。
在下文中一共展示了tf_util.function方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def __init__(self, env, hidden_size, entcoeff=0.001, lr_rate=1e-3, scope="adversary"):
self.scope = scope
self.observation_shape = env.observation_space.shape
self.actions_shape = env.action_space.shape
self.input_shape = tuple([o+a for o, a in zip(self.observation_shape, self.actions_shape)])
self.num_actions = env.action_space.shape[0]
self.hidden_size = hidden_size
self.build_ph()
# Build grpah
generator_logits = self.build_graph(self.generator_obs_ph, self.generator_acs_ph, reuse=False)
expert_logits = self.build_graph(self.expert_obs_ph, self.expert_acs_ph, reuse=True)
# Build accuracy
generator_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(generator_logits) < 0.5))
expert_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(expert_logits) > 0.5))
# Build regression loss
# let x = logits, z = targets.
# z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=generator_logits, labels=tf.zeros_like(generator_logits))
generator_loss = tf.reduce_mean(generator_loss)
expert_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=expert_logits, labels=tf.ones_like(expert_logits))
expert_loss = tf.reduce_mean(expert_loss)
# Build entropy loss
logits = tf.concat([generator_logits, expert_logits], 0)
entropy = tf.reduce_mean(logit_bernoulli_entropy(logits))
entropy_loss = -entcoeff*entropy
# Loss + Accuracy terms
self.losses = [generator_loss, expert_loss, entropy, entropy_loss, generator_acc, expert_acc]
self.loss_name = ["generator_loss", "expert_loss", "entropy", "entropy_loss", "generator_acc", "expert_acc"]
self.total_loss = generator_loss + expert_loss + entropy_loss
# Build Reward for policy
self.reward_op = -tf.log(1-tf.nn.sigmoid(generator_logits)+1e-8)
var_list = self.get_trainable_variables()
self.lossandgrad = U.function([self.generator_obs_ph, self.generator_acs_ph, self.expert_obs_ph, self.expert_acs_ph],
self.losses + [U.flatgrad(self.total_loss, var_list)])
示例2: _init
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
with tf.variable_scope("obfilter"):
self.ob_rms = RunningMeanStd(shape=ob_space.shape)
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
else:
pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(pdparam)
self.state_in = []
self.state_out = []
# change for BC
stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
self.ac = ac
self._act = U.function([stochastic, ob], [ac, self.vpred])
示例3: learn
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4,
adam_epsilon=1e-5, optim_stepsize=3e-4,
ckpt_dir=None, log_dir=None, task_name=None,
verbose=False):
val_per_iter = int(max_iters/10)
ob_space = env.observation_space
ac_space = env.action_space
pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy
# placeholder
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])
stochastic = U.get_placeholder_cached(name="stochastic")
loss = tf.reduce_mean(tf.square(ac-pi.ac))
var_list = pi.get_trainable_variables()
adam = MpiAdam(var_list, epsilon=adam_epsilon)
lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)])
U.initialize()
adam.sync()
logger.log("Pretraining with Behavior Cloning...")
for iter_so_far in tqdm(range(int(max_iters))):
ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train')
train_loss, g = lossandgrad(ob_expert, ac_expert, True)
adam.update(g, optim_stepsize)
if verbose and iter_so_far % val_per_iter == 0:
ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
val_loss, _ = lossandgrad(ob_expert, ac_expert, True)
logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss))
if ckpt_dir is None:
savedir_fname = tempfile.TemporaryDirectory().name
else:
savedir_fname = osp.join(ckpt_dir, task_name)
U.save_state(savedir_fname, var_list=pi.get_variables())
return savedir_fname
示例4: __init__
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def __init__(self, ob_dim, ac_dim):
# Here we'll construct a bunch of expressions, which will be used in two places:
# (1) When sampling actions
# (2) When computing loss functions, for the policy update
# Variables specific to (1) have the word "sampled" in them,
# whereas variables specific to (2) have the word "old" in them
ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
wd_dict = {}
h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
self.wd_dict = wd_dict
self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
logstd_1a = tf.expand_dims(logstd_1a, 0)
std_1a = tf.exp(logstd_1a)
std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
logprobsampled_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
logprob_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = tf.reduce_mean(kl_div(oldac_dist, ac_dist, ac_dim))
#kl = .5 * tf.reduce_mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
surr = - tf.reduce_mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
surr_sampled = - tf.reduce_mean(logprob_n) # Sampled loss of the policy
self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
#self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
self.compute_kl = U.function([ob_no, oldac_dist], kl)
self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
U.initialize() # Initialize uninitialized TF variables
示例5: pathlength
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def pathlength(path):
return path["reward"].shape[0]# Loss function that we'll differentiate to get the policy gradient
示例6: _init
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
obscaled = ob / 255.0
with tf.variable_scope("pol"):
x = obscaled
x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
x = U.flattenallbut0(x)
x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(logits)
with tf.variable_scope("vf"):
x = obscaled
x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
x = U.flattenallbut0(x)
x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))
self.vpredz = self.vpred
self.state_in = []
self.state_out = []
stochastic = tf.placeholder(dtype=tf.bool, shape=())
ac = self.pd.sample()
self._act = U.function([stochastic, ob], [ac, self.vpred])
示例7: _init
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space, kind):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
x = ob / 255.0
if kind == 'small': # from A3C paper
x = tf.nn.relu(U.conv2d(x, 16, "l1", [8, 8], [4, 4], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 32, "l2", [4, 4], [2, 2], pad="VALID"))
x = U.flattenallbut0(x)
x = tf.nn.relu(tf.layers.dense(x, 256, name='lin', kernel_initializer=U.normc_initializer(1.0)))
elif kind == 'large': # Nature DQN
x = tf.nn.relu(U.conv2d(x, 32, "l1", [8, 8], [4, 4], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 64, "l2", [4, 4], [2, 2], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 64, "l3", [3, 3], [1, 1], pad="VALID"))
x = U.flattenallbut0(x)
x = tf.nn.relu(tf.layers.dense(x, 512, name='lin', kernel_initializer=U.normc_initializer(1.0)))
else:
raise NotImplementedError
logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(logits)
self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))[:,0]
self.state_in = []
self.state_out = []
stochastic = tf.placeholder(dtype=tf.bool, shape=())
ac = self.pd.sample() # XXX
self._act = U.function([stochastic, ob], [ac, self.vpred])
示例8: __init__
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def __init__(self, epsilon=1e-2, shape=()):
self._sum = tf.get_variable(
dtype=tf.float64,
shape=shape,
initializer=tf.constant_initializer(0.0),
name="runningsum", trainable=False)
self._sumsq = tf.get_variable(
dtype=tf.float64,
shape=shape,
initializer=tf.constant_initializer(epsilon),
name="runningsumsq", trainable=False)
self._count = tf.get_variable(
dtype=tf.float64,
shape=(),
initializer=tf.constant_initializer(epsilon),
name="count", trainable=False)
self.shape = shape
self.mean = tf.to_float(self._sum / self._count)
self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 ))
newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum')
newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var')
newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count')
self.incfiltparams = U.function([newsum, newsumsq, newcount], [],
updates=[tf.assign_add(self._sum, newsum),
tf.assign_add(self._sumsq, newsumsq),
tf.assign_add(self._count, newcount)])
示例9: test_MpiAdam
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def test_MpiAdam():
np.random.seed(0)
tf.set_random_seed(0)
a = tf.Variable(np.random.randn(3).astype('float32'))
b = tf.Variable(np.random.randn(2,5).astype('float32'))
loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))
stepsize = 1e-2
update_op = tf.train.AdamOptimizer(stepsize).minimize(loss)
do_update = U.function([], loss, updates=[update_op])
tf.get_default_session().run(tf.global_variables_initializer())
for i in range(10):
print(i,do_update())
tf.set_random_seed(0)
tf.get_default_session().run(tf.global_variables_initializer())
var_list = [a,b]
lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)], updates=[update_op])
adam = MpiAdam(var_list)
for i in range(10):
l,g = lossandgrad()
adam.update(g, stepsize)
print(i,l)
示例10: validate_probtype
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def validate_probtype(probtype, pdparam):
N = 100000
# Check to see if mean negative log likelihood == differential entropy
Mval = np.repeat(pdparam[None, :], N, axis=0)
M = probtype.param_placeholder([N])
X = probtype.sample_placeholder([N])
pd = probtype.pdfromflat(M)
calcloglik = U.function([X, M], pd.logp(X))
calcent = U.function([M], pd.entropy())
Xval = tf.get_default_session().run(pd.sample(), feed_dict={M:Mval})
logliks = calcloglik(Xval, Mval)
entval_ll = - logliks.mean() #pylint: disable=E1101
entval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
entval = calcent(Mval).mean() #pylint: disable=E1101
assert np.abs(entval - entval_ll) < 3 * entval_ll_stderr # within 3 sigmas
# Check to see if kldiv[p,q] = - ent[p] - E_p[log q]
M2 = probtype.param_placeholder([N])
pd2 = probtype.pdfromflat(M2)
q = pdparam + np.random.randn(pdparam.size) * 0.1
Mval2 = np.repeat(q[None, :], N, axis=0)
calckl = U.function([M, M2], pd.kl(pd2))
klval = calckl(Mval, Mval2).mean() #pylint: disable=E1101
logliks = calcloglik(Xval, Mval2)
klval_ll = - entval - logliks.mean() #pylint: disable=E1101
klval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
print('ok on', probtype, pdparam)
示例11: _init
# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
with tf.variable_scope("obfilter"):
self.ob_rms = RunningMeanStd(shape=ob_space.shape)
with tf.variable_scope('vf'):
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0)))
self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0]
with tf.variable_scope('pol'):
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0)))
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01))
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
else:
pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(pdparam)
self.state_in = []
self.state_out = []
stochastic = tf.placeholder(dtype=tf.bool, shape=())
ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
self._act = U.function([stochastic, ob], [ac, self.vpred])