当前位置: 首页>>代码示例>>Python>>正文


Python tf_util.function方法代码示例

本文整理汇总了Python中baselines.common.tf_util.function方法的典型用法代码示例。如果您正苦于以下问题:Python tf_util.function方法的具体用法?Python tf_util.function怎么用?Python tf_util.function使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.common.tf_util的用法示例。


在下文中一共展示了tf_util.function方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def __init__(self, env, hidden_size, entcoeff=0.001, lr_rate=1e-3, scope="adversary"):
        self.scope = scope
        self.observation_shape = env.observation_space.shape
        self.actions_shape = env.action_space.shape
        self.input_shape = tuple([o+a for o, a in zip(self.observation_shape, self.actions_shape)])
        self.num_actions = env.action_space.shape[0]
        self.hidden_size = hidden_size
        self.build_ph()
        # Build grpah
        generator_logits = self.build_graph(self.generator_obs_ph, self.generator_acs_ph, reuse=False)
        expert_logits = self.build_graph(self.expert_obs_ph, self.expert_acs_ph, reuse=True)
        # Build accuracy
        generator_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(generator_logits) < 0.5))
        expert_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(expert_logits) > 0.5))
        # Build regression loss
        # let x = logits, z = targets.
        # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
        generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=generator_logits, labels=tf.zeros_like(generator_logits))
        generator_loss = tf.reduce_mean(generator_loss)
        expert_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=expert_logits, labels=tf.ones_like(expert_logits))
        expert_loss = tf.reduce_mean(expert_loss)
        # Build entropy loss
        logits = tf.concat([generator_logits, expert_logits], 0)
        entropy = tf.reduce_mean(logit_bernoulli_entropy(logits))
        entropy_loss = -entcoeff*entropy
        # Loss + Accuracy terms
        self.losses = [generator_loss, expert_loss, entropy, entropy_loss, generator_acc, expert_acc]
        self.loss_name = ["generator_loss", "expert_loss", "entropy", "entropy_loss", "generator_acc", "expert_acc"]
        self.total_loss = generator_loss + expert_loss + entropy_loss
        # Build Reward for policy
        self.reward_op = -tf.log(1-tf.nn.sigmoid(generator_logits)+1e-8)
        var_list = self.get_trainable_variables()
        self.lossandgrad = U.function([self.generator_obs_ph, self.generator_acs_ph, self.expert_obs_ph, self.expert_acs_ph],
                                      self.losses + [U.flatgrad(self.total_loss, var_list)]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:36,代码来源:adversary.py

示例2: _init

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
        self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]

        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))

        if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
            mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
            logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
            pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        else:
            pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        # change for BC
        stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self.ac = ac
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:40,代码来源:mlp_policy.py

示例3: learn

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4,
          adam_epsilon=1e-5, optim_stepsize=3e-4,
          ckpt_dir=None, log_dir=None, task_name=None,
          verbose=False):

    val_per_iter = int(max_iters/10)
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)  # Construct network for new policy
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    loss = tf.reduce_mean(tf.square(ac-pi.ac))
    var_list = pi.get_trainable_variables()
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)])

    U.initialize()
    adam.sync()
    logger.log("Pretraining with Behavior Cloning...")
    for iter_so_far in tqdm(range(int(max_iters))):
        ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train')
        train_loss, g = lossandgrad(ob_expert, ac_expert, True)
        adam.update(g, optim_stepsize)
        if verbose and iter_so_far % val_per_iter == 0:
            ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
            val_loss, _ = lossandgrad(ob_expert, ac_expert, True)
            logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss))

    if ckpt_dir is None:
        savedir_fname = tempfile.TemporaryDirectory().name
    else:
        savedir_fname = osp.join(ckpt_dir, task_name)
    U.save_state(savedir_fname, var_list=pi.get_variables())
    return savedir_fname 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:38,代码来源:behavior_clone.py

示例4: __init__

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def __init__(self, ob_dim, ac_dim):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
        wd_dict = {}
        h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
        self.wd_dict = wd_dict
        self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
        logstd_1a = tf.expand_dims(logstd_1a, 0)
        std_1a = tf.exp(logstd_1a)
        std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
        ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
        sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
        logprobsampled_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
        logprob_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
        kl = tf.reduce_mean(kl_div(oldac_dist, ac_dist, ac_dim))
        #kl = .5 * tf.reduce_mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
        surr = - tf.reduce_mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
        surr_sampled = - tf.reduce_mean(logprob_n) # Sampled loss of the policy
        self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
        #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
        self.compute_kl = U.function([ob_no, oldac_dist], kl)
        self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
        U.initialize() # Initialize uninitialized TF variables 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:34,代码来源:policies.py

示例5: pathlength

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def pathlength(path):
    return path["reward"].shape[0]# Loss function that we'll differentiate to get the policy gradient 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:4,代码来源:acktr_cont.py

示例6: _init

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        obscaled = ob / 255.0

        with tf.variable_scope("pol"):
            x = obscaled
            x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
            logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
            self.pd = pdtype.pdfromflat(logits)
        with tf.variable_scope("vf"):
            x = obscaled
            x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
            self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))
            self.vpredz = self.vpred

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample()
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:35,代码来源:nosharing_cnn_policy.py

示例7: _init

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space, kind):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        x = ob / 255.0
        if kind == 'small': # from A3C paper
            x = tf.nn.relu(U.conv2d(x, 16, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 32, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 256, name='lin', kernel_initializer=U.normc_initializer(1.0)))
        elif kind == 'large': # Nature DQN
            x = tf.nn.relu(U.conv2d(x, 32, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l2", [4, 4], [2, 2], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l3", [3, 3], [1, 1], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 512, name='lin', kernel_initializer=U.normc_initializer(1.0)))
        else:
            raise NotImplementedError

        logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
        self.pd = pdtype.pdfromflat(logits)
        self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))[:,0]

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample() # XXX
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:35,代码来源:cnn_policy.py

示例8: __init__

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def __init__(self, epsilon=1e-2, shape=()):

        self._sum = tf.get_variable(
            dtype=tf.float64,
            shape=shape,
            initializer=tf.constant_initializer(0.0),
            name="runningsum", trainable=False)
        self._sumsq = tf.get_variable(
            dtype=tf.float64,
            shape=shape,
            initializer=tf.constant_initializer(epsilon),
            name="runningsumsq", trainable=False)
        self._count = tf.get_variable(
            dtype=tf.float64,
            shape=(),
            initializer=tf.constant_initializer(epsilon),
            name="count", trainable=False)
        self.shape = shape

        self.mean = tf.to_float(self._sum / self._count)
        self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean) , 1e-2 ))

        newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum')
        newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var')
        newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count')
        self.incfiltparams = U.function([newsum, newsumsq, newcount], [],
            updates=[tf.assign_add(self._sum, newsum),
                     tf.assign_add(self._sumsq, newsumsq),
                     tf.assign_add(self._count, newcount)]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:31,代码来源:mpi_running_mean_std.py

示例9: test_MpiAdam

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def test_MpiAdam():
    np.random.seed(0)
    tf.set_random_seed(0)

    a = tf.Variable(np.random.randn(3).astype('float32'))
    b = tf.Variable(np.random.randn(2,5).astype('float32'))
    loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))

    stepsize = 1e-2
    update_op = tf.train.AdamOptimizer(stepsize).minimize(loss)
    do_update = U.function([], loss, updates=[update_op])

    tf.get_default_session().run(tf.global_variables_initializer())
    for i in range(10):
        print(i,do_update())

    tf.set_random_seed(0)
    tf.get_default_session().run(tf.global_variables_initializer())

    var_list = [a,b]
    lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)], updates=[update_op])
    adam = MpiAdam(var_list)

    for i in range(10):
        l,g = lossandgrad()
        adam.update(g, stepsize)
        print(i,l) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:29,代码来源:mpi_adam.py

示例10: validate_probtype

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def validate_probtype(probtype, pdparam):
    N = 100000
    # Check to see if mean negative log likelihood == differential entropy
    Mval = np.repeat(pdparam[None, :], N, axis=0)
    M = probtype.param_placeholder([N])
    X = probtype.sample_placeholder([N])
    pd = probtype.pdfromflat(M)
    calcloglik = U.function([X, M], pd.logp(X))
    calcent = U.function([M], pd.entropy())
    Xval = tf.get_default_session().run(pd.sample(), feed_dict={M:Mval})
    logliks = calcloglik(Xval, Mval)
    entval_ll = - logliks.mean() #pylint: disable=E1101
    entval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
    entval = calcent(Mval).mean() #pylint: disable=E1101
    assert np.abs(entval - entval_ll) < 3 * entval_ll_stderr # within 3 sigmas

    # Check to see if kldiv[p,q] = - ent[p] - E_p[log q]
    M2 = probtype.param_placeholder([N])
    pd2 = probtype.pdfromflat(M2)
    q = pdparam + np.random.randn(pdparam.size) * 0.1
    Mval2 = np.repeat(q[None, :], N, axis=0)
    calckl = U.function([M, M2], pd.kl(pd2))
    klval = calckl(Mval, Mval2).mean() #pylint: disable=E1101
    logliks = calcloglik(Xval, Mval2)
    klval_ll = - entval - logliks.mean() #pylint: disable=E1101
    klval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
    assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
    print('ok on', probtype, pdparam) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:30,代码来源:distributions.py

示例11: _init

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import function [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        with tf.variable_scope('vf'):
            obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
            last_out = obz
            for i in range(num_hid_layers):
                last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0)))
            self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0]

        with tf.variable_scope('pol'):
            last_out = obz
            for i in range(num_hid_layers):
                last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0)))
            if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
                mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01))
                logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
                pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
            else:
                pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
开发者ID:MaxSobolMark,项目名称:HardRLWithYoutube,代码行数:39,代码来源:mlp_policy.py


注:本文中的baselines.common.tf_util.function方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。