当前位置: 首页>>代码示例>>Python>>正文


Python tf_util.argmax方法代码示例

本文整理汇总了Python中baselines.common.tf_util.argmax方法的典型用法代码示例。如果您正苦于以下问题:Python tf_util.argmax方法的具体用法?Python tf_util.argmax怎么用?Python tf_util.argmax使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.common.tf_util的用法示例。


在下文中一共展示了tf_util.argmax方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: sample_dtype

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def sample_dtype(self):
        return tf.int32

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=-1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:27,代码来源:distributions.py

示例2: sample_dtype

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def sample_dtype(self):
        return tf.int32

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=1) 
开发者ID:AdamStelmaszczyk,项目名称:learning2run,代码行数:27,代码来源:distributions.py

示例3: mode

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def mode(self):
        return tf.argmax(self.logits, axis=-1) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:4,代码来源:distributions.py

示例4: sample

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def sample(self):
        u = tf.random_uniform(tf.shape(self.logits))
        return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:5,代码来源:distributions.py

示例5: sample

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def sample(self):
        u = tf.random_uniform(tf.shape(self.logits), dtype=self.logits.dtype)
        return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
开发者ID:MaxSobolMark,项目名称:HardRLWithYoutube,代码行数:5,代码来源:distributions.py

示例6: pdfromlatent

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=-1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
开发者ID:quantumiracle,项目名称:Reinforcement_Learning_for_Traffic_Light_Control,代码行数:28,代码来源:distributions.py

示例7: mode

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def mode(self):
        return U.argmax(self.logits, axis=1) 
开发者ID:AdamStelmaszczyk,项目名称:learning2run,代码行数:4,代码来源:distributions.py

示例8: sample

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def sample(self):
        u = tf.random_uniform(tf.shape(self.logits))
        return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=1) 
开发者ID:AdamStelmaszczyk,项目名称:learning2run,代码行数:5,代码来源:distributions.py

示例9: pdfromlatent

# 需要导入模块: from baselines.common import tf_util [as 别名]
# 或者: from baselines.common.tf_util import argmax [as 别名]
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=-1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
开发者ID:hiwonjoon,项目名称:ICML2019-TREX,代码行数:28,代码来源:distributions.py


注:本文中的baselines.common.tf_util.argmax方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。