当前位置: 首页>>代码示例>>Python>>正文


Python mpi_running_mean_std.RunningMeanStd方法代码示例

本文整理汇总了Python中baselines.common.mpi_running_mean_std.RunningMeanStd方法的典型用法代码示例。如果您正苦于以下问题:Python mpi_running_mean_std.RunningMeanStd方法的具体用法?Python mpi_running_mean_std.RunningMeanStd怎么用?Python mpi_running_mean_std.RunningMeanStd使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.common.mpi_running_mean_std的用法示例。


在下文中一共展示了mpi_running_mean_std.RunningMeanStd方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_graph

# 需要导入模块: from baselines.common import mpi_running_mean_std [as 别名]
# 或者: from baselines.common.mpi_running_mean_std import RunningMeanStd [as 别名]
def build_graph(self, obs_ph, acs_ph, reuse=False):
        with tf.variable_scope(self.scope):
            if reuse:
                tf.get_variable_scope().reuse_variables()

            with tf.variable_scope("obfilter"):
                self.obs_rms = RunningMeanStd(shape=self.observation_shape)
            obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std)
            _input = tf.concat([obs, acs_ph], axis=1)  # concatenate the two input -> form a transition
            p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh)
            p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh)
            logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity)
        return logits 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:15,代码来源:adversary.py

示例2: _init

# 需要导入模块: from baselines.common import mpi_running_mean_std [as 别名]
# 或者: from baselines.common.mpi_running_mean_std import RunningMeanStd [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
        self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]

        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))

        if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
            mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
            logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
            pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        else:
            pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        # change for BC
        stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self.ac = ac
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:40,代码来源:mlp_policy.py

示例3: _init

# 需要导入模块: from baselines.common import mpi_running_mean_std [as 别名]
# 或者: from baselines.common.mpi_running_mean_std import RunningMeanStd [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        with tf.variable_scope('vf'):
            obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
            last_out = obz
            for i in range(num_hid_layers):
                last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0)))
            self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0]

        with tf.variable_scope('pol'):
            last_out = obz
            for i in range(num_hid_layers):
                last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0)))
            if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
                mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01))
                logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
                pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
            else:
                pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:39,代码来源:mlp_policy.py

示例4: _normalize_clip_observation

# 需要导入模块: from baselines.common import mpi_running_mean_std [as 别名]
# 或者: from baselines.common.mpi_running_mean_std import RunningMeanStd [as 别名]
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]):
    rms = RunningMeanStd(shape=x.shape[1:])
    norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range))
    return norm_x, rms 
开发者ID:MaxSobolMark,项目名称:HardRLWithYoutube,代码行数:6,代码来源:policies.py


注:本文中的baselines.common.mpi_running_mean_std.RunningMeanStd方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。