当前位置: 首页>>代码示例>>Python>>正文


Python utils.kl_div方法代码示例

本文整理汇总了Python中baselines.acktr.utils.kl_div方法的典型用法代码示例。如果您正苦于以下问题:Python utils.kl_div方法的具体用法?Python utils.kl_div怎么用?Python utils.kl_div使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.acktr.utils的用法示例。


在下文中一共展示了utils.kl_div方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import kl_div [as 别名]
def __init__(self, ob_dim, ac_dim):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
        wd_dict = {}
        h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
        self.wd_dict = wd_dict
        self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
        logstd_1a = tf.expand_dims(logstd_1a, 0)
        std_1a = tf.exp(logstd_1a)
        std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
        ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
        sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
        logprobsampled_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
        logprob_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
        kl = tf.reduce_mean(kl_div(oldac_dist, ac_dist, ac_dim))
        #kl = .5 * tf.reduce_mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
        surr = - tf.reduce_mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
        surr_sampled = - tf.reduce_mean(logprob_n) # Sampled loss of the policy
        self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
        #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
        self.compute_kl = U.function([ob_no, oldac_dist], kl)
        self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
        U.initialize() # Initialize uninitialized TF variables 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:34,代码来源:policies.py

示例2: __init__

# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import kl_div [as 别名]
def __init__(self, ob_dim, ac_dim):
    # Here we'll construct a bunch of expressions, which will be used in two places:
    # (1) When sampling actions
    # (2) When computing loss functions, for the policy update
    # Variables specific to (1) have the word "sampled" in them,
    # whereas variables specific to (2) have the word "old" in them
    ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
    oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
    oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
    adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
    oldlogprob_n = tf.placeholder(tf.float32, shape=[None], name='oldlogprob') # log probability of previous actions
    wd_dict = {}
    h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
    h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
    mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
    self.wd_dict = wd_dict
    self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
    logstd_1a = tf.expand_dims(logstd_1a, 0)
    std_1a = tf.exp(logstd_1a)
    std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
    ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
    sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
    logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
    logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
    kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
    #kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
    surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
    surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
    self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
    #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
    self.compute_kl = U.function([ob_no, oldac_dist], kl)
    self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
    U.initialize() # Initialize uninitialized TF variables 
开发者ID:chris-chris,项目名称:mario-rl-tutorial,代码行数:35,代码来源:policies.py

示例3: __init__

# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import kl_div [as 别名]
def __init__(self, ob_dim, ac_dim):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
        wd_dict = {}
        h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
        self.wd_dict = wd_dict
        self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
        logstd_1a = tf.expand_dims(logstd_1a, 0)
        std_1a = tf.exp(logstd_1a)
        std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
        ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
        sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
        logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
        logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
        kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
        #kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
        surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
        surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
        self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
        #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
        self.compute_kl = U.function([ob_no, oldac_dist], kl)
        self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
        U.initialize() # Initialize uninitialized TF variables 
开发者ID:cxxgtxy,项目名称:deeprl-baselines,代码行数:34,代码来源:policies.py

示例4: __init__

# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import kl_div [as 别名]
def __init__(self, sess, ob_dim, ac_dim, vf_lr=0.001, cv_lr=0.001, reuse=False):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        self.relaxed = False
        self.X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        self.ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        self.oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        
        with tf.variable_scope("model", reuse=reuse):
            h1 = tf.nn.tanh(dense(self.ob_no, 64, "pi_h1", weight_init=U.normc_initializer(1.0), bias_init=0.0))
            h2 = tf.nn.tanh(dense(h1, 64, "pi_h2", weight_init=U.normc_initializer(1.0), bias_init=0.0))
            mean_na = dense(h2, ac_dim, "pi", weight_init=U.normc_initializer(0.1), bias_init=0.0) # Mean control output
            self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
            logstd_1a = tf.expand_dims(logstd_1a, 0)
            self.std_1a = tf.exp(logstd_1a)
            self.std_na = tf.tile(self.std_1a, [tf.shape(mean_na)[0], 1])
            ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(self.std_na, [-1, ac_dim])], 1)
            sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
            logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
            self.logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - self.oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
            kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
        

            vh1 = tf.nn.elu(dense(self.X, 64, "vf_h1", weight_init=U.normc_initializer(1.0), bias_init=0))
            vh2 = tf.nn.elu(dense(vh1, 64, "vf_h2", weight_init=U.normc_initializer(1.0), bias_init=0))
            vpred_n = dense(vh2, 1, "vf", weight_init=None, bias_init=0)
            v0 = vpred_n[:, 0]
            self.vf_optim = tf.train.AdamOptimizer(vf_lr)
        
        def act(ob):
            ac, dist, logp = sess.run([sampled_ac_na, ac_dist, logprobsampled_n], {self.ob_no: ob[None]})  # Generate a new action and its logprob
            return ac[0], dist[0], logp[0]
        def value(obs, x):
            return sess.run(v0, {self.X: x, self.ob_no:obs})
        def preproc(path):
            l = pathlength(path)
            al = np.arange(l).reshape(-1,1)/10.0
            act = path["action_dist"].astype('float32')
            X = np.concatenate([path['observation'], act, al, np.ones((l, 1))], axis=1)
            return X
        def predict(obs, path):
            return value(obs, preproc(path))
        def compute_kl(ob, dist):
            return sess.run(kl, {self.ob_no: ob, oldac_dist: dist})
            
        self.mean = mean_na
        self.vf = v0
        self.act = act
        self.value = value
        self.preproc = preproc
        self.predict = predict
        self.compute_kl = compute_kl
        self.a0 = sampled_ac_na 
开发者ID:wgrathwohl,项目名称:BackpropThroughTheVoidRL,代码行数:59,代码来源:policies.py


注:本文中的baselines.acktr.utils.kl_div方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。