本文整理汇总了Python中baselines.acktr.utils.dense方法的典型用法代码示例。如果您正苦于以下问题:Python utils.dense方法的具体用法?Python utils.dense怎么用?Python utils.dense使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类baselines.acktr.utils
的用法示例。
在下文中一共展示了utils.dense方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
wd_dict = {}
h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
wd_loss = tf.get_collection("vf_losses", None)
loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
self._predict = U.function([X], vpred_n)
optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
async=1, kfac_update=2, cold_iter=50, \
weight_decay_dict=wd_dict, max_grad_norm=None)
vf_var_list = []
for var in tf.trainable_variables():
if "vf" in var.name:
vf_var_list.append(var)
update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
U.initialize() # Initialize uninitialized TF variables
示例2: __init__
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
wd_dict = {}
h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
wd_loss = tf.get_collection("vf_losses", None)
loss = U.mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
loss_sampled = U.mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
self._predict = U.function([X], vpred_n)
optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
async=1, kfac_update=2, cold_iter=50, \
weight_decay_dict=wd_dict, max_grad_norm=None)
vf_var_list = []
for var in tf.trainable_variables():
if "vf" in var.name:
vf_var_list.append(var)
update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
U.initialize() # Initialize uninitialized TF variables
示例3: _init
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
with tf.variable_scope("obfilter"):
self.ob_rms = RunningMeanStd(shape=ob_space.shape)
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
else:
pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(pdparam)
self.state_in = []
self.state_out = []
# change for BC
stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
self.ac = ac
self._act = U.function([stochastic, ob], [ac, self.vpred])
示例4: __init__
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def __init__(self, ob_dim, ac_dim):
# Here we'll construct a bunch of expressions, which will be used in two places:
# (1) When sampling actions
# (2) When computing loss functions, for the policy update
# Variables specific to (1) have the word "sampled" in them,
# whereas variables specific to (2) have the word "old" in them
ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
wd_dict = {}
h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
self.wd_dict = wd_dict
self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
logstd_1a = tf.expand_dims(logstd_1a, 0)
std_1a = tf.exp(logstd_1a)
std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
logprobsampled_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
logprob_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = tf.reduce_mean(kl_div(oldac_dist, ac_dist, ac_dim))
#kl = .5 * tf.reduce_mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
surr = - tf.reduce_mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
surr_sampled = - tf.reduce_mean(logprob_n) # Sampled loss of the policy
self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
#self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
self.compute_kl = U.function([ob_no, oldac_dist], kl)
self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
U.initialize() # Initialize uninitialized TF variables
示例5: __init__
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def __init__(self, ob_dim, ac_dim):
# Here we'll construct a bunch of expressions, which will be used in two places:
# (1) When sampling actions
# (2) When computing loss functions, for the policy update
# Variables specific to (1) have the word "sampled" in them,
# whereas variables specific to (2) have the word "old" in them
ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
oldlogprob_n = tf.placeholder(tf.float32, shape=[None], name='oldlogprob') # log probability of previous actions
wd_dict = {}
h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
self.wd_dict = wd_dict
self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
logstd_1a = tf.expand_dims(logstd_1a, 0)
std_1a = tf.exp(logstd_1a)
std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
#kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
#self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
self.compute_kl = U.function([ob_no, oldac_dist], kl)
self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
U.initialize() # Initialize uninitialized TF variables
示例6: __init__
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def __init__(self, ob_dim, ac_dim):
# Here we'll construct a bunch of expressions, which will be used in two places:
# (1) When sampling actions
# (2) When computing loss functions, for the policy update
# Variables specific to (1) have the word "sampled" in them,
# whereas variables specific to (2) have the word "old" in them
ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
wd_dict = {}
h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
self.wd_dict = wd_dict
self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
logstd_1a = tf.expand_dims(logstd_1a, 0)
std_1a = tf.exp(logstd_1a)
std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
#kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
#self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
self.compute_kl = U.function([ob_no, oldac_dist], kl)
self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
U.initialize() # Initialize uninitialized TF variables
示例7: __init__
# 需要导入模块: from baselines.acktr import utils [as 别名]
# 或者: from baselines.acktr.utils import dense [as 别名]
def __init__(self, sess, ob_dim, ac_dim, vf_lr=0.001, cv_lr=0.001, reuse=False):
# Here we'll construct a bunch of expressions, which will be used in two places:
# (1) When sampling actions
# (2) When computing loss functions, for the policy update
# Variables specific to (1) have the word "sampled" in them,
# whereas variables specific to (2) have the word "old" in them
self.relaxed = False
self.X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
self.ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
self.oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
with tf.variable_scope("model", reuse=reuse):
h1 = tf.nn.tanh(dense(self.ob_no, 64, "pi_h1", weight_init=U.normc_initializer(1.0), bias_init=0.0))
h2 = tf.nn.tanh(dense(h1, 64, "pi_h2", weight_init=U.normc_initializer(1.0), bias_init=0.0))
mean_na = dense(h2, ac_dim, "pi", weight_init=U.normc_initializer(0.1), bias_init=0.0) # Mean control output
self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
logstd_1a = tf.expand_dims(logstd_1a, 0)
self.std_1a = tf.exp(logstd_1a)
self.std_na = tf.tile(self.std_1a, [tf.shape(mean_na)[0], 1])
ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(self.std_na, [-1, ac_dim])], 1)
sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
self.logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - self.oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
vh1 = tf.nn.elu(dense(self.X, 64, "vf_h1", weight_init=U.normc_initializer(1.0), bias_init=0))
vh2 = tf.nn.elu(dense(vh1, 64, "vf_h2", weight_init=U.normc_initializer(1.0), bias_init=0))
vpred_n = dense(vh2, 1, "vf", weight_init=None, bias_init=0)
v0 = vpred_n[:, 0]
self.vf_optim = tf.train.AdamOptimizer(vf_lr)
def act(ob):
ac, dist, logp = sess.run([sampled_ac_na, ac_dist, logprobsampled_n], {self.ob_no: ob[None]}) # Generate a new action and its logprob
return ac[0], dist[0], logp[0]
def value(obs, x):
return sess.run(v0, {self.X: x, self.ob_no:obs})
def preproc(path):
l = pathlength(path)
al = np.arange(l).reshape(-1,1)/10.0
act = path["action_dist"].astype('float32')
X = np.concatenate([path['observation'], act, al, np.ones((l, 1))], axis=1)
return X
def predict(obs, path):
return value(obs, preproc(path))
def compute_kl(ob, dist):
return sess.run(kl, {self.ob_no: ob, oldac_dist: dist})
self.mean = mean_na
self.vf = v0
self.act = act
self.value = value
self.preproc = preproc
self.predict = predict
self.compute_kl = compute_kl
self.a0 = sampled_ac_na