本文整理汇总了Python中autograd.numpy.zeros方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.zeros方法的具体用法?Python numpy.zeros怎么用?Python numpy.zeros使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类autograd.numpy
的用法示例。
在下文中一共展示了numpy.zeros方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def __init__(self, n_var=2, n_constr=2, **kwargs):
super().__init__(n_var, n_constr, **kwargs)
a, b = anp.zeros(n_constr + 1), anp.zeros(n_constr + 1)
a[0], b[0] = 1, 1
delta = 1 / (n_constr + 1)
alpha = delta
for j in range(n_constr):
beta = a[j] * anp.exp(-b[j] * alpha)
a[j + 1] = (a[j] + beta) / 2
b[j + 1] = - 1 / alpha * anp.log(beta / a[j + 1])
alpha += delta
self.a = a[1:]
self.b = b[1:]
示例2: fast_zero_pad
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def fast_zero_pad(arr, pad_width):
"""Fast version of numpy.pad when `mode="constant"`
Executing `numpy.pad` with zeros is ~1000 times slower
because it doesn't make use of the `zeros` method for padding.
Paramters
---------
arr: array
The array to pad
pad_width: tuple
Number of values padded to the edges of each axis.
See numpy docs for more.
Returns
-------
result: array
The array padded with `constant_values`
"""
newshape = tuple([a+ps[0]+ps[1] for a, ps in zip(arr.shape, pad_width)])
result = np.zeros(newshape, dtype=arr.dtype)
slices = tuple([slice(start, s-end) for s, (start, end) in zip(result.shape, pad_width)])
result[slices] = arr
return result
示例3: log_norm
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def log_norm(self):
try:
return self._log_norm
except AttributeError:
if self.frame != self.model_frame:
images_ = self.images[self.slices_for_images]
weights_ = self.weights[self.slices_for_images]
else:
images_ = self.images
weights_ = self.weights
# normalization of the single-pixel likelihood:
# 1 / [(2pi)^1/2 (sigma^2)^1/2]
# with inverse variance weights: sigma^2 = 1/weight
# full likelihood is sum over all data samples: pixel in images
# NOTE: this assumes that all pixels are used in likelihood!
log_sigma = np.zeros(weights_.shape, dtype=self.weights.dtype)
cuts = weights_ > 0
log_sigma[cuts] = np.log(1 / weights_[cuts])
self._log_norm = (
np.prod(images_.shape) / 2 * np.log(2 * np.pi)
+ np.sum(log_sigma) / 2
)
return self._log_norm
示例4: get_loss
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def get_loss(self, model):
"""Computes the loss/fidelity of a given model wrt to the observation
Parameters
----------
model: array
A model from `Blend`
Returns
-------
loss: float
Loss of the model
"""
model_ = self.render(model)
images_ = self.images
weights_ = self.weights
# properly normalized likelihood
log_sigma = np.zeros(weights_.shape, dtype=weights_.dtype)
cuts = weights_ > 0
log_sigma[cuts] = np.log(1 / weights_[cuts])
log_norm = (
np.prod(images_.shape) / 2 * np.log(2 * np.pi)
+ np.sum(log_sigma) / 2
)
return log_norm + 0.5 * np.sum(weights_ * (model_ - images_) ** 2)
示例5: _grad_add_models
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def _grad_add_models(upstream_grad, *models, full_model, slices, index):
"""Gradient for a single model
The full model is just the sum of the models,
so the gradient is 1 for each model,
we just have to slice it appropriately.
"""
model = models[index]
full_model_slices = slices[index][0]
model_slices = slices[index][1]
def result(upstream_grad):
_result = np.zeros(model.shape, dtype=model.dtype)
_result[model_slices] = upstream_grad[full_model_slices]
return _result
return result
示例6: get_treeseq_configs
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def get_treeseq_configs(treeseq, sampled_n):
mat = np.zeros((len(sampled_n), sum(sampled_n)), dtype=int)
j = 0
for i, n in enumerate(sampled_n):
for _ in range(n):
mat[i, j] = 1
j += 1
mat = scipy.sparse.csr_matrix(mat)
def get_config(genos):
derived_counts = mat.dot(genos)
return np.array([
sampled_n - derived_counts,
derived_counts
]).T
for v in treeseq.variants():
yield get_config(v.genotypes)
示例7: __init__
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def __init__(self, next_state, running_cost, final_cost,
umax, state_dim, pred_time=50):
self.pred_time = pred_time
self.umax = umax
self.v = [0.0 for _ in range(pred_time + 1)]
self.v_x = [np.zeros(state_dim) for _ in range(pred_time + 1)]
self.v_xx = [np.zeros((state_dim, state_dim)) for _ in range(pred_time + 1)]
self.f = next_state
self.lf = final_cost
self.lf_x = grad(self.lf)
self.lf_xx = jacobian(self.lf_x)
self.l_x = grad(running_cost, 0)
self.l_u = grad(running_cost, 1)
self.l_xx = jacobian(self.l_x, 0)
self.l_uu = jacobian(self.l_u, 1)
self.l_ux = jacobian(self.l_u, 0)
self.f_x = jacobian(self.f, 0)
self.f_u = jacobian(self.f, 1)
self.f_xx = jacobian(self.f_x, 0)
self.f_uu = jacobian(self.f_u, 1)
self.f_ux = jacobian(self.f_u, 0)
示例8: init_model_params
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def init_model_params(Dx, Dy, alpha, r, obs, rs = npr.RandomState(0)):
mu0 = np.zeros(Dx)
Sigma0 = np.eye(Dx)
A = np.zeros((Dx,Dx))
for i in range(Dx):
for j in range(Dx):
A[i,j] = alpha**(abs(i-j)+1)
Q = np.eye(Dx)
C = np.zeros((Dy,Dx))
if obs == 'sparse':
C[:Dy,:Dy] = np.eye(Dy)
else:
C = rs.normal(size=(Dy,Dx))
R = r * np.eye(Dy)
return (mu0, Sigma0, A, Q, C, R)
示例9: generate_data
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def generate_data(model_params, T = 5, rs = npr.RandomState(0)):
mu0, Sigma0, A, Q, C, R = model_params
Dx = mu0.shape[0]
Dy = R.shape[0]
x_true = np.zeros((T,Dx))
y_true = np.zeros((T,Dy))
for t in range(T):
if t > 0:
x_true[t,:] = rs.multivariate_normal(np.dot(A,x_true[t-1,:]),Q)
else:
x_true[0,:] = rs.multivariate_normal(mu0,Sigma0)
y_true[t,:] = rs.multivariate_normal(np.dot(C,x_true[t,:]),R)
return x_true, y_true
示例10: train
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def train(self, X_train, F_train, y_train, batch_size=32, num_iters=1000,
lr=1e-3, param_scale=0.01, log_every=100, init_weights=None):
grad_fun = build_batched_grad_fences(grad(self.objective), batch_size,
X_train, F_train, y_train)
if init_weights is None:
init_weights = self.init_weights(param_scale)
saved_weights = np.zeros((num_iters, self.num_weights))
def callback(weights, i, gradients):
apl = self.average_path_length(weights, X_train, F_train, y_train)
saved_weights[i, :] = weights
loss_train = self.objective(weights, X_train, F_train, y_train)
if i % log_every == 0:
print('model: gru | iter: {} | loss: {:.2f} | apl: {:.2f}'.format(i, loss_train, apl))
optimized_weights = adam(grad_fun, init_weights, num_iters=num_iters,
step_size=lr, callback=callback)
self.saved_weights = saved_weights
self.weights = optimized_weights
return optimized_weights
示例11: project
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def project(vx, vy, occlusion):
"""Project the velocity field to be approximately mass-conserving,
using a few iterations of Gauss-Seidel."""
p = np.zeros(vx.shape)
div = -0.5 * (np.roll(vx, -1, axis=1) - np.roll(vx, 1, axis=1)
+ np.roll(vy, -1, axis=0) - np.roll(vy, 1, axis=0))
div = make_continuous(div, occlusion)
for k in range(50):
p = (div + np.roll(p, 1, axis=1) + np.roll(p, -1, axis=1)
+ np.roll(p, 1, axis=0) + np.roll(p, -1, axis=0))/4.0
p = make_continuous(p, occlusion)
vx = vx - 0.5*(np.roll(p, -1, axis=1) - np.roll(p, 1, axis=1))
vy = vy - 0.5*(np.roll(p, -1, axis=0) - np.roll(p, 1, axis=0))
vx = occlude(vx, occlusion)
vy = occlude(vy, occlusion)
return vx, vy
示例12: test_assignment_raises_error
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def test_assignment_raises_error():
def fun(A, b):
A[1] = b
return A
A = npr.randn(5)
with pytest.raises(TypeError):
check_grads(fun)(A, 3.0)
# def test_nonscalar_output_1():
# with pytest.raises(TypeError):
# grad(lambda x: x * 2)(np.zeros(2))
# def test_nonscalar_output_2():
# with pytest.raises(TypeError):
# grad(lambda x: x * 2)(np.zeros(2))
# TODO:
# Diamond patterns
# Taking grad again after returning const
# Empty functions
# 2nd derivatives with fanout, thinking about the outgrad adder
示例13: test_getter
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def test_getter():
def fun(input_tuple):
A = np.sum(input_tuple[0])
B = np.sum(input_tuple[1])
C = np.sum(input_tuple[1])
return A + B + C
d_fun = grad(fun)
input_tuple = (npr.randn(5, 6),
npr.randn(4, 3),
npr.randn(2, 4))
result = d_fun(input_tuple)
assert np.allclose(result[0], np.ones((5, 6)))
assert np.allclose(result[1], 2 * np.ones((4, 3)))
assert np.allclose(result[2], np.zeros((2, 4)))
示例14: test_getter
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def test_getter():
def fun(input_dict):
A = np.sum(input_dict['item_1'])
B = np.sum(input_dict['item_2'])
C = np.sum(input_dict['item_2'])
return A + B + C
d_fun = grad(fun)
input_dict = {'item_1' : npr.randn(5, 6),
'item_2' : npr.randn(4, 3),
'item_X' : npr.randn(2, 4)}
result = d_fun(input_dict)
assert np.allclose(result['item_1'], np.ones((5, 6)))
assert np.allclose(result['item_2'], 2 * np.ones((4, 3)))
assert np.allclose(result['item_X'], np.zeros((2, 4)))
示例15: test_isinstance
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import zeros [as 别名]
def test_isinstance():
def checker(ex, type_, truthval):
assert isinstance(ex, type_) == truthval
return 1.
examples = [
[list, [[]], [()]],
[np.ndarray, [np.zeros(1)], [[]]],
[(tuple, list), [[], ()], [np.zeros(1)]],
]
for type_, positive_examples, negative_examples in examples:
for ex in positive_examples:
checker(ex, type_, True)
grad(checker)(ex, type_, True)
for ex in negative_examples:
checker(ex, type_, False)
grad(checker)(ex, type_, False)