本文整理汇总了Python中autograd.numpy.tanh方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.tanh方法的具体用法?Python numpy.tanh怎么用?Python numpy.tanh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类autograd.numpy
的用法示例。
在下文中一共展示了numpy.tanh方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: rnn_predict
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def rnn_predict(params, inputs):
def update_rnn(input, hiddens):
return np.tanh(concat_and_multiply(params['change'], input, hiddens))
def hiddens_to_output_probs(hiddens):
output = concat_and_multiply(params['predict'], hiddens)
return output - logsumexp(output, axis=1, keepdims=True) # Normalize log-probs.
num_sequences = inputs.shape[1]
hiddens = np.repeat(params['init hiddens'], num_sequences, axis=0)
output = [hiddens_to_output_probs(hiddens)]
for input in inputs: # Iterate over time steps.
hiddens = update_rnn(input, hiddens)
output.append(hiddens_to_output_probs(hiddens))
return output
示例2: lstm_predict
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def lstm_predict(params, inputs):
def update_lstm(input, hiddens, cells):
change = np.tanh(concat_and_multiply(params['change'], input, hiddens))
forget = sigmoid(concat_and_multiply(params['forget'], input, hiddens))
ingate = sigmoid(concat_and_multiply(params['ingate'], input, hiddens))
outgate = sigmoid(concat_and_multiply(params['outgate'], input, hiddens))
cells = cells * forget + ingate * change
hiddens = outgate * np.tanh(cells)
return hiddens, cells
def hiddens_to_output_probs(hiddens):
output = concat_and_multiply(params['predict'], hiddens)
return output - logsumexp(output, axis=1, keepdims=True) # Normalize log-probs.
num_sequences = inputs.shape[1]
hiddens = np.repeat(params['init hiddens'], num_sequences, axis=0)
cells = np.repeat(params['init cells'], num_sequences, axis=0)
output = [hiddens_to_output_probs(hiddens)]
for input in inputs: # Iterate over time steps.
hiddens, cells = update_lstm(input, hiddens, cells)
output.append(hiddens_to_output_probs(hiddens))
return output
示例3: setup
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def setup(self):
self.batch_size = 16
self.dtype = "float32"
self.D = 2**10
self.x = 0.01 * np.random.randn(self.batch_size,self.D).astype(self.dtype)
self.W1 = 0.01 * np.random.randn(self.D,self.D).astype(self.dtype)
self.b1 = 0.01 * np.random.randn(self.D).astype(self.dtype)
self.Wout = 0.01 * np.random.randn(self.D,1).astype(self.dtype)
self.bout = 0.01 * np.random.randn(1).astype(self.dtype)
self.l = (np.random.rand(self.batch_size,1) > 0.5).astype(self.dtype)
self.n = 50
def autograd_rnn(params, x, label, n):
W, b, Wout, bout = params
h1 = x
for i in range(n):
h1 = np.tanh(np.dot(h1, W) + b)
logit = np.dot(h1, Wout) + bout
loss = -np.sum(label * logit - (
logit + np.log(1 + np.exp(-logit))))
return loss
self.fn = autograd_rnn
self.grad_fn = grad(self.fn)
示例4: test_grad_and_aux
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def test_grad_and_aux():
A = npr.randn(5, 4)
x = npr.randn(4)
f = lambda x: (np.sum(np.dot(A, x)), x**2)
g = lambda x: np.sum(np.dot(A, x))
assert len(grad_and_aux(f)(x)) == 2
check_equivalent(grad_and_aux(f)(x)[0], grad(g)(x))
check_equivalent(grad_and_aux(f)(x)[1], x**2)
## No longer support this behavior
# def test_make_ggnvp_broadcasting():
# A = npr.randn(4, 5)
# x = npr.randn(10, 4)
# v = npr.randn(10, 4)
# fun = lambda x: np.tanh(np.dot(x, A))
# res1 = np.stack([_make_explicit_ggnvp(fun)(xi)(vi) for xi, vi in zip(x, v)])
# res2 = make_ggnvp(fun)(x)(v)
# check_equivalent(res1, res2)
示例5: forward_pass
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def forward_pass(self, X):
self.last_input = X
n_samples, n_timesteps, input_shape = X.shape
states = np.zeros((n_samples, n_timesteps + 1, self.hidden_dim))
states[:, -1, :] = self.hprev.copy()
p = self._params
for i in range(n_timesteps):
states[:, i, :] = np.tanh(np.dot(X[:, i, :], p["W"]) + np.dot(states[:, i - 1, :], p["U"]) + p["b"])
self.states = states
self.hprev = states[:, n_timesteps - 1, :].copy()
if self.return_sequences:
return states[:, 0:-1, :]
else:
return states[:, -2, :]
示例6: build_mlp
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def build_mlp(layer_sizes, activation=np.tanh, output_activation=lambda x: x):
"""Constructor for multilayer perceptron.
@param layer_sizes: list of integers
list of layer sizes in the perceptron.
@param activation: function (default: np.tanh)
what activation to use after first N - 1 layers.
@param output_activation: function (default: linear)
what activation to use after last layer.
@return predict: function
used to predict y_hat
@return log_likelihood: function
used to compute log likelihood
@return parser: WeightsParser object
object to organize weights
"""
parser = WeightsParser()
for i, shape in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
parser.add_shape(('weights', i), shape)
parser.add_shape(('biases', i), (1, shape[1]))
def predict(weights, X):
cur_X = copy(X.T)
for layer in range(len(layer_sizes) - 1):
cur_W = parser.get(weights, ('weights', layer))
cur_B = parser.get(weights, ('biases', layer))
cur_Z = np.dot(cur_X, cur_W) + cur_B
cur_X = activation(cur_Z)
return output_activation(cur_Z.T)
def log_likelihood(weights, X, y):
y_hat = predict(weights, X)
return mse(y.T, y_hat.T)
return predict, log_likelihood, parser
示例7: sigmoid
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def sigmoid(x):
return 0.5 * (np.tanh(x) + 1)
示例8: sigmoid
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def sigmoid(x):
return 0.5*(np.tanh(x) + 1.0) # Output ranges from 0 to 1.
示例9: nonlinearity
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def nonlinearity(self, x):
return np.tanh(x)
示例10: neural_net_predict
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def neural_net_predict(params, inputs):
"""Implements a deep neural network for classification.
params is a list of (weights, bias) tuples.
inputs is an (N x D) matrix.
returns normalized class log-probabilities."""
for W, b in params:
outputs = np.dot(inputs, W) + b
inputs = np.tanh(outputs)
return outputs - logsumexp(outputs, axis=1, keepdims=True)
示例11: sigmoid
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def sigmoid(x): return 0.5 * (np.tanh(x) + 1.0)
示例12: nn_predict
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def nn_predict(params, inputs, nonlinearity=np.tanh):
for W, b in params:
outputs = np.dot(inputs, W) + b
inputs = nonlinearity(outputs)
return outputs
示例13: make_nn_funs
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def make_nn_funs(layer_sizes, L2_reg, noise_variance, nonlinearity=np.tanh):
"""These functions implement a standard multi-layer perceptron,
vectorized over both training examples and weight samples."""
shapes = list(zip(layer_sizes[:-1], layer_sizes[1:]))
num_weights = sum((m+1)*n for m, n in shapes)
def unpack_layers(weights):
num_weight_sets = len(weights)
for m, n in shapes:
yield weights[:, :m*n] .reshape((num_weight_sets, m, n)),\
weights[:, m*n:m*n+n].reshape((num_weight_sets, 1, n))
weights = weights[:, (m+1)*n:]
def predictions(weights, inputs):
"""weights is shape (num_weight_samples x num_weights)
inputs is shape (num_datapoints x D)"""
inputs = np.expand_dims(inputs, 0)
for W, b in unpack_layers(weights):
outputs = np.einsum('mnd,mdo->mno', inputs, W) + b
inputs = nonlinearity(outputs)
return outputs
def logprob(weights, inputs, targets):
log_prior = -L2_reg * np.sum(weights**2, axis=1)
preds = predictions(weights, inputs)
log_lik = -np.sum((preds - targets)**2, axis=1)[:, 0] / noise_variance
return log_prior + log_lik
return num_weights, predictions, logprob
示例14: test_make_jvp
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def test_make_jvp():
A = npr.randn(3, 5)
x = npr.randn(5)
v = npr.randn(5)
fun = lambda x: np.tanh(np.dot(A, x))
jvp_explicit = lambda x: lambda v: np.dot(jacobian(fun)(x), v)
jvp = make_jvp(fun)
check_equivalent(jvp_explicit(x)(v), jvp(x)(v)[1])
示例15: test_make_ggnvp
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import tanh [as 别名]
def test_make_ggnvp():
A = npr.randn(5, 4)
x = npr.randn(4)
v = npr.randn(4)
fun = lambda x: np.dot(A, x)
check_equivalent(make_ggnvp(fun)(x)(v), _make_explicit_ggnvp(fun)(x)(v))
fun2 = lambda x: np.tanh(np.dot(A, x))
check_equivalent(make_ggnvp(fun2)(x)(v), _make_explicit_ggnvp(fun2)(x)(v))