本文整理汇总了Python中autograd.numpy.matmul方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.matmul方法的具体用法?Python numpy.matmul怎么用?Python numpy.matmul使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类autograd.numpy
的用法示例。
在下文中一共展示了numpy.matmul方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward_pass
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def forward_pass(self, X, hyp):
Q = self.hidden_dim
H = np.zeros((X.shape[1],Q))
idx_1 = 0
idx_2 = idx_1 + self.X_dim*Q
idx_3 = idx_2 + Q
idx_4 = idx_3 + Q*Q
U = np.reshape(hyp[idx_1:idx_2], (self.X_dim,Q))
b = np.reshape(hyp[idx_2:idx_3], (1,Q))
W = np.reshape(hyp[idx_3:idx_4], (Q,Q))
for i in range(0, self.lags):
H = activation(np.matmul(H,W) + np.matmul(X[i,:,:],U) + b)
idx_1 = idx_4
idx_2 = idx_1 + Q*self.Y_dim
idx_3 = idx_2 + self.Y_dim
V = np.reshape(hyp[idx_1:idx_2], (Q,self.Y_dim))
c = np.reshape(hyp[idx_2:idx_3], (1,self.Y_dim))
Y = np.matmul(H,V) + c
return Y
示例2: forward_pass
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def forward_pass(self, X, Q, hyp):
H = X
idx_3 = 0
layers = Q.shape[0]
for layer in range(0,layers-2):
idx_1 = idx_3
idx_2 = idx_1 + Q[layer]*Q[layer+1]
idx_3 = idx_2 + Q[layer+1]
A = np.reshape(hyp[idx_1:idx_2], (Q[layer],Q[layer+1]))
b = np.reshape(hyp[idx_2:idx_3], (1,Q[layer+1]))
H = activation(np.matmul(H,A) + b)
idx_1 = idx_3
idx_2 = idx_1 + Q[-2]*Q[-1]
idx_3 = idx_2 + Q[-1]
A = np.reshape(hyp[idx_1:idx_2], (Q[-2],Q[-1]))
b = np.reshape(hyp[idx_2:idx_3], (1,Q[-1]))
mu = np.matmul(H,A) + b
return mu
示例3: backward
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def backward(self, x_seq, u_seq):
self.v[-1] = self.lf(x_seq[-1])
self.v_x[-1] = self.lf_x(x_seq[-1])
self.v_xx[-1] = self.lf_xx(x_seq[-1])
k_seq = []
kk_seq = []
for t in range(self.pred_time - 1, -1, -1):
f_x_t = self.f_x(x_seq[t], u_seq[t])
f_u_t = self.f_u(x_seq[t], u_seq[t])
q_x = self.l_x(x_seq[t], u_seq[t]) + np.matmul(f_x_t.T, self.v_x[t + 1])
q_u = self.l_u(x_seq[t], u_seq[t]) + np.matmul(f_u_t.T, self.v_x[t + 1])
q_xx = self.l_xx(x_seq[t], u_seq[t]) + \
np.matmul(np.matmul(f_x_t.T, self.v_xx[t + 1]), f_x_t) + \
np.dot(self.v_x[t + 1], np.squeeze(self.f_xx(x_seq[t], u_seq[t])))
tmp = np.matmul(f_u_t.T, self.v_xx[t + 1])
q_uu = self.l_uu(x_seq[t], u_seq[t]) + np.matmul(tmp, f_u_t) + \
np.dot(self.v_x[t + 1], np.squeeze(self.f_uu(x_seq[t], u_seq[t])))
q_ux = self.l_ux(x_seq[t], u_seq[t]) + np.matmul(tmp, f_x_t) + \
np.dot(self.v_x[t + 1], np.squeeze(self.f_ux(x_seq[t], u_seq[t])))
inv_q_uu = np.linalg.inv(q_uu)
k = -np.matmul(inv_q_uu, q_u)
kk = -np.matmul(inv_q_uu, q_ux)
dv = 0.5 * np.matmul(q_u, k)
self.v[t] += dv
self.v_x[t] = q_x - np.matmul(np.matmul(q_u, inv_q_uu), q_ux)
self.v_xx[t] = q_xx + np.matmul(q_ux.T, kk)
k_seq.append(k)
kk_seq.append(kk)
k_seq.reverse()
kk_seq.reverse()
return k_seq, kk_seq
示例4: forward
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def forward(self, x_seq, u_seq, k_seq, kk_seq):
x_seq_hat = np.array(x_seq)
u_seq_hat = np.array(u_seq)
for t in range(len(u_seq)):
control = k_seq[t] + np.matmul(kk_seq[t], (x_seq_hat[t] - x_seq[t]))
u_seq_hat[t] = np.clip(u_seq[t] + control, -self.umax, self.umax)
x_seq_hat[t + 1] = self.f(x_seq_hat[t], u_seq_hat[t])
return x_seq_hat, u_seq_hat
示例5: taylor_approx
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def taylor_approx(target, stencil, values):
"""Use taylor series to approximate up to second order derivatives.
Args:
target: An array of shape (..., n), a batch of n-dimensional points
where one wants to approximate function value and derivatives.
stencil: An array of shape broadcastable to (..., k, n), for each target
point a set of k = triangle(n + 1) points to use on its approximation.
values: An array of shape broadcastable to (..., k), the function value at
each of the stencil points.
Returns:
An array of shape (..., k), for each target point the approximated
function value, gradient and hessian evaluated at that point (flattened
and in the same order as returned by derivative_names).
"""
# Broadcast arrays to their required shape.
batch_shape, ndim = target.shape[:-1], target.shape[-1]
stencil = np.broadcast_to(stencil, batch_shape + (triangular(ndim + 1), ndim))
values = np.broadcast_to(values, stencil.shape[:-1])
# Subtract target from each stencil point.
delta_x = stencil - np.expand_dims(target, axis=-2)
delta_xy = np.matmul(
np.expand_dims(delta_x, axis=-1), np.expand_dims(delta_x, axis=-2))
i = np.arange(ndim)
j, k = np.triu_indices(ndim, k=1)
# Build coefficients for the Taylor series equations, namely:
# f(stencil) = coeffs @ [f(target), df/d0(target), ...]
coeffs = np.concatenate([
np.ones(delta_x.shape[:-1] + (1,)), # f(target)
delta_x, # df/di(target)
delta_xy[..., i, i] / 2, # d^2f/di^2(target)
delta_xy[..., j, k], # d^2f/{dj dk}(target)
], axis=-1)
# Then: [f(target), df/d0(target), ...] = coeffs^{-1} @ f(stencil)
return np.squeeze(
np.matmul(np.linalg.inv(coeffs), values[..., np.newaxis]), axis=-1)
示例6: generalized_outer_product
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def generalized_outer_product(x):
if np.ndim(x) == 1:
return np.outer(x, x)
return np.matmul(x, np.swapaxes(x, -1, -2))
示例7: covgrad
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def covgrad(x, mean, cov, allow_singular=False):
if allow_singular:
raise NotImplementedError("The multivariate normal pdf is not "
"differentiable w.r.t. a singular covariance matix")
J = np.linalg.inv(cov)
solved = np.matmul(J, np.expand_dims(x - mean, -1))
return 1./2 * (generalized_outer_product(solved) - J)
示例8: test_matmul
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def test_matmul(): combo_check(np.matmul, [0, 1])(
[R(3), R(2, 3), R(2, 2, 3), C(3), C(2, 3)],
[R(3), R(3, 4), R(2, 3, 4), C(3), C(3, 4)])
示例9: test_matmul_broadcast
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def test_matmul_broadcast(): combo_check(np.matmul, [0, 1])([R(1, 2, 2)], [R(3, 2, 1)])
示例10: neural_net
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def neural_net(self, X, Q, hyp):
H = X
idx_3 = 0
layers = Q.shape[0]
for layer in range(0,layers-2):
idx_1 = idx_3
idx_2 = idx_1 + Q[layer]*Q[layer+1]
idx_3 = idx_2 + Q[layer+1]
A = np.reshape(hyp[idx_1:idx_2], (Q[layer],Q[layer+1]))
b = np.reshape(hyp[idx_2:idx_3], (1,Q[layer+1]))
H = activation(np.matmul(H,A) + b)
idx_1 = idx_3
idx_2 = idx_1 + Q[-2]*Q[-1]
idx_3 = idx_2 + Q[-1]
A = np.reshape(hyp[idx_1:idx_2], (Q[-2],Q[-1]))
b = np.reshape(hyp[idx_2:idx_3], (1,Q[-1]))
mu = np.matmul(H,A) + b
idx_1 = idx_3
idx_2 = idx_1 + Q[-2]*Q[-1]
idx_3 = idx_2 + Q[-1]
A = np.reshape(hyp[idx_1:idx_2], (Q[-2],Q[-1]))
b = np.reshape(hyp[idx_2:idx_3], (1,Q[-1]))
Sigma = np.exp(np.matmul(H,A) + b)
return mu, Sigma
示例11: likelihood
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def likelihood(self, hyp):
M = self.M
Z = self.Z
m = self.m
S = self.S
X_batch = self.X_batch
y_batch = self.y_batch
jitter = self.jitter
jitter_cov = self.jitter_cov
N = X_batch.shape[0]
logsigma_n = hyp[-1]
sigma_n = np.exp(logsigma_n)
# Compute K_u_inv
K_u = kernel(Z, Z, hyp[:-1])
# K_u_inv = np.linalg.solve(K_u + np.eye(M)*jitter_cov, np.eye(M))
L = np.linalg.cholesky(K_u + np.eye(M)*jitter_cov)
K_u_inv = np.linalg.solve(L.T, np.linalg.solve(L,np.eye(M)))
self.K_u_inv = K_u_inv
# Compute mu
psi = kernel(Z, X_batch, hyp[:-1])
K_u_inv_m = np.matmul(K_u_inv,m)
MU = np.matmul(psi.T,K_u_inv_m)
# Compute cov
Alpha = np.matmul(K_u_inv,psi)
COV = kernel(X_batch, X_batch, hyp[:-1]) - np.matmul(psi.T, np.matmul(K_u_inv,psi)) + \
np.matmul(Alpha.T, np.matmul(S,Alpha))
COV_inv = np.linalg.solve(COV + np.eye(N)*sigma_n + np.eye(N)*jitter, np.eye(N))
# L = np.linalg.cholesky(COV + np.eye(N)*sigma_n + np.eye(N)*jitter)
# COV_inv = np.linalg.solve(np.transpose(L), np.linalg.solve(L,np.eye(N)))
# Compute cov(Z, X)
cov_ZX = np.matmul(S,Alpha)
# Update m and S
alpha = np.matmul(COV_inv, cov_ZX.T)
m = m + np.matmul(cov_ZX, np.matmul(COV_inv, y_batch-MU))
S = S - np.matmul(cov_ZX, alpha)
self.m = m
self.S = S
# Compute NLML
K_u_inv_m = np.matmul(K_u_inv,m)
NLML = 0.5*np.matmul(m.T,K_u_inv_m) + np.sum(np.log(np.diag(L))) + 0.5*np.log(2.*np.pi)*M
return NLML[0,0]
示例12: predict
# 需要导入模块: from autograd import numpy [as 别名]
# 或者: from autograd.numpy import matmul [as 别名]
def predict(self, X_star):
Z = self.Z
m = self.m.value
S = self.S.value
hyp = self.hyp
K_u_inv = self.K_u_inv
N_star = X_star.shape[0]
partitions_size = 10000
(number_of_partitions, remainder_partition) = divmod(N_star, partitions_size)
mean_star = np.zeros((N_star,1));
var_star = np.zeros((N_star,1));
for partition in range(0,number_of_partitions):
print("Predicting partition: %d" % (partition))
idx_1 = partition*partitions_size
idx_2 = (partition+1)*partitions_size
# Compute mu
psi = kernel(Z, X_star[idx_1:idx_2,:], hyp[:-1])
K_u_inv_m = np.matmul(K_u_inv,m)
mu = np.matmul(psi.T,K_u_inv_m)
mean_star[idx_1:idx_2,0:1] = mu;
# Compute cov
Alpha = np.matmul(K_u_inv,psi)
cov = kernel(X_star[idx_1:idx_2,:], X_star[idx_1:idx_2,:], hyp[:-1]) - \
np.matmul(psi.T, np.matmul(K_u_inv,psi)) + np.matmul(Alpha.T, np.matmul(S,Alpha))
var = np.abs(np.diag(cov))# + np.exp(hyp[-1])
var_star[idx_1:idx_2,0] = var
print("Predicting the last partition")
idx_1 = number_of_partitions*partitions_size
idx_2 = number_of_partitions*partitions_size + remainder_partition
# Compute mu
psi = kernel(Z, X_star[idx_1:idx_2,:], hyp[:-1])
K_u_inv_m = np.matmul(K_u_inv,m)
mu = np.matmul(psi.T,K_u_inv_m)
mean_star[idx_1:idx_2,0:1] = mu;
# Compute cov
Alpha = np.matmul(K_u_inv,psi)
cov = kernel(X_star[idx_1:idx_2,:], X_star[idx_1:idx_2,:], hyp[:-1]) - \
np.matmul(psi.T, np.matmul(K_u_inv,psi)) + np.matmul(Alpha.T, np.matmul(S,Alpha))
var = np.abs(np.diag(cov))# + np.exp(hyp[-1])
var_star[idx_1:idx_2,0] = var
return mean_star, var_star