当前位置: 首页>>代码示例>>Python>>正文


Python attention_decoder.attention_decoder方法代码示例

本文整理汇总了Python中attention_decoder.attention_decoder方法的典型用法代码示例。如果您正苦于以下问题:Python attention_decoder.attention_decoder方法的具体用法?Python attention_decoder.attention_decoder怎么用?Python attention_decoder.attention_decoder使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在attention_decoder的用法示例。


在下文中一共展示了attention_decoder.attention_decoder方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _add_decoder

# 需要导入模块: import attention_decoder [as 别名]
# 或者: from attention_decoder import attention_decoder [as 别名]
def _add_decoder(self, inputs):
        """Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.

    Args:
      inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)

    Returns:
      outputs: List of tensors; the outputs of the decoder
      out_state: The final state of the decoder
      attn_dists: A list of tensors; the attention distributions
      p_gens: A list of scalar tensors; the generation probabilities
      coverage: A tensor, the current coverage vector
    """
        hps = self._hps
        cell = tf.contrib.rnn.LSTMCell(hps.hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)

        prev_coverage = self.prev_coverage if hps.mode == "decode" and hps.coverage else None  # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time

        outputs, out_state, attn_dists, p_gens, coverage = attention_decoder(inputs, self._dec_in_state,
                                                                             self._enc_states, self._enc_padding_mask,
                                                                             cell, initial_state_attention=(
                    hps.mode == "decode"), pointer_gen=hps.pointer_gen, use_coverage=hps.coverage,
                                                                             prev_coverage=prev_coverage)

        return outputs, out_state, attn_dists, p_gens, coverage 
开发者ID:IBM,项目名称:MAX-Text-Summarizer,代码行数:27,代码来源:model.py

示例2: _add_decoder

# 需要导入模块: import attention_decoder [as 别名]
# 或者: from attention_decoder import attention_decoder [as 别名]
def _add_decoder(self, inputs):
    """Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.

    Args:
      inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)

    Returns:
      outputs: List of tensors; the outputs of the decoder
      out_state: The final state of the decoder
      attn_dists: A list of tensors; the attention distributions
      p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
      coverage: A tensor, the current coverage vector
    """
    hps = self._hps
    cell = tf.contrib.rnn.LSTMCell(hps.hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)

    prev_coverage = self.prev_coverage if hps.mode=="decode" and hps.coverage else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time

    outputs, out_state, attn_dists, p_gens, coverage = attention_decoder(inputs, self._dec_in_state, self._enc_states, self._enc_padding_mask, cell, initial_state_attention=(hps.mode=="decode"), pointer_gen=hps.pointer_gen, use_coverage=hps.coverage, prev_coverage=prev_coverage)

    return outputs, out_state, attn_dists, p_gens, coverage 
开发者ID:abisee,项目名称:pointer-generator,代码行数:23,代码来源:model.py

示例3: _add_decoder

# 需要导入模块: import attention_decoder [as 别名]
# 或者: from attention_decoder import attention_decoder [as 别名]
def _add_decoder(self, emb_dec_inputs, embedding):
    """Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.

    Args:
      emb_dec_inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
      embedding: embedding matrix (vocab_size, emb_dim)
    Returns:
      outputs: List of tensors; the outputs of the decoder
      out_state: The final state of the decoder
      attn_dists: A list of tensors; the attention distributions
      p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
      coverage: A tensor, the current coverage vector
    """
    hps = self._hps
    cell = tf.contrib.rnn.LSTMCell(hps.dec_hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)

    prev_coverage = self.prev_coverage if (hps.mode=="decode" and hps.coverage) else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
    prev_decoder_outputs = self.prev_decoder_outputs if (hps.intradecoder and hps.mode=="decode") else tf.stack([],axis=0)
    prev_encoder_es = self.prev_encoder_es if (hps.use_temporal_attention and hps.mode=="decode") else tf.stack([],axis=0)
    return attention_decoder(_hps=hps,
      v_size=self._vocab.size(),
      _max_art_oovs=self._max_art_oovs,
      _enc_batch_extend_vocab=self._enc_batch_extend_vocab,
      emb_dec_inputs=emb_dec_inputs,
      target_batch=self._target_batch,
      _dec_in_state=self._dec_in_state,
      _enc_states=self._enc_states,
      enc_padding_mask=self._enc_padding_mask,
      dec_padding_mask=self._dec_padding_mask,
      cell=cell,
      embedding=embedding,
      sampling_probability=self._sampling_probability if FLAGS.scheduled_sampling else 0,
      alpha=self._alpha if FLAGS.E2EBackProp else 0,
      unk_id=self._vocab.word2id(data.UNKNOWN_TOKEN),
      initial_state_attention=(hps.mode=="decode"),
      pointer_gen=hps.pointer_gen,
      use_coverage=hps.coverage,
      prev_coverage=prev_coverage,
      prev_decoder_outputs=prev_decoder_outputs,
      prev_encoder_es = prev_encoder_es) 
开发者ID:yaserkl,项目名称:TransferRL,代码行数:42,代码来源:model.py

示例4: _add_decoder

# 需要导入模块: import attention_decoder [as 别名]
# 或者: from attention_decoder import attention_decoder [as 别名]
def _add_decoder(self, emb_dec_inputs, embedding):
    """Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.

    Args:
      emb_dec_inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)
      embedding: embedding matrix (vocab_size, emb_dim)
    Returns:
      outputs: List of tensors; the outputs of the decoder
      out_state: The final state of the decoder
      attn_dists: A list of tensors; the attention distributions
      p_gens: A list of tensors shape (batch_size, 1); the generation probabilities
      coverage: A tensor, the current coverage vector
    """
    hps = self._hps
    cell = tf.contrib.rnn.LSTMCell(hps.dec_hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)

    prev_coverage = self.prev_coverage if (hps.mode=="decode" and hps.coverage) else None # In decode mode, we run attention_decoder one step at a time and so need to pass in the previous step's coverage vector each time
    prev_decoder_outputs = self.prev_decoder_outputs if (hps.intradecoder and hps.mode=="decode") else tf.stack([],axis=0)
    prev_encoder_es = self.prev_encoder_es if (hps.use_temporal_attention and hps.mode=="decode") else tf.stack([],axis=0)
    return attention_decoder(hps,
      self._vocab.size(),
      self._max_art_oovs,
      self._enc_batch_extend_vocab,
      emb_dec_inputs,
      self._target_batch,
      self._dec_in_state,
      self._enc_states,
      self._enc_padding_mask,
      self._dec_padding_mask,
      cell,
      embedding,
      self._sampling_probability if FLAGS.scheduled_sampling else 0,
      self._alpha if FLAGS.E2EBackProp else 0,
      self._vocab.word2id(data.UNKNOWN_TOKEN),
      initial_state_attention=(hps.mode=="decode"),
      pointer_gen=hps.pointer_gen,
      use_coverage=hps.coverage,
      prev_coverage=prev_coverage,
      prev_decoder_outputs=prev_decoder_outputs,
      prev_encoder_es = prev_encoder_es) 
开发者ID:yaserkl,项目名称:RLSeq2Seq,代码行数:42,代码来源:model.py

示例5: _add_decoder

# 需要导入模块: import attention_decoder [as 别名]
# 或者: from attention_decoder import attention_decoder [as 别名]
def _add_decoder(self, inputs):
        """Add attention decoder to the graph. In train or eval mode, you call this once to get output on ALL steps. In decode (beam search) mode, you call this once for EACH decoder step.

        Args:
          inputs: inputs to the decoder (word embeddings). A list of tensors shape (batch_size, emb_dim)

        Returns:
          outputs: List of tensors; the outputs of the decoder
          out_state: The final state of the decoder
          attn_dists: A list of tensors; the attention distributions
          p_gens: A list of scalar tensors; the generation probabilities
          coverage: A tensor, the current coverage vector
        """
        hps = self._hps
        if self._isrum in ['all', 'dec']:
            cell = RUMCell(
                self._hps.hidden_dim,
                eta_=self._time_norm,
                lambda_=self._lambda,
                update_gate=self._update_gate,
                use_layer_norm=self._layer_norm,
                use_zoneout=self._zoneout
            )
        else:
            cell = tf.contrib.rnn.LSTMCell(
                hps.hidden_dim, state_is_tuple=True, initializer=self.rand_unif_init)

        # In decode mode, we run attention_decoder one step at a time and so
        # need to pass in the previous step's coverage vector each time
        prev_coverage = self.prev_coverage if hps.mode == "decode" and hps.coverage else None

        outputs, out_state, attn_dists, p_gens, coverage = attention_decoder(inputs, self._dec_in_state, self._enc_states, self._enc_padding_mask, cell, initial_state_attention=(
            hps.mode == "decode"), pointer_gen=hps.pointer_gen, use_coverage=hps.coverage, prev_coverage=prev_coverage, isrum=self._isrum, lambda_=self._lambda)

        if self._isgrad:
            if self._isrum in ['none', 'enc']:
                tf.summary.scalar('out_state_c', tf.norm(out_state.c))
                tf.summary.scalar('out_state_h', tf.norm(out_state.h))
            else:
                tf.summary.scalar('out_state', tf.norm(out_state))

        return outputs, out_state, attn_dists, p_gens, coverage 
开发者ID:rdangovs,项目名称:rotational-unit-of-memory,代码行数:44,代码来源:model.py


注:本文中的attention_decoder.attention_decoder方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。