本文整理汇总了Python中astropy.units.mm方法的典型用法代码示例。如果您正苦于以下问题:Python units.mm方法的具体用法?Python units.mm怎么用?Python units.mm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类astropy.units
的用法示例。
在下文中一共展示了units.mm方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_cam_to_hor
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_cam_to_hor():
from ctapipe.coordinates import CameraFrame
# Coordinates in any frame can be given as a numpy array of the xyz positions
# e.g. in this case the position on pixels in the camera
pix_x = [1] * u.m
pix_y = [1] * u.m
focal_length = 15000 * u.mm
# first define the camera frame
pointing = SkyCoord(alt=70 * u.deg, az=0 * u.deg, frame=AltAz())
camera_frame = CameraFrame(focal_length=focal_length, telescope_pointing=pointing)
# transform
camera_coord = SkyCoord(pix_x, pix_y, frame=camera_frame)
altaz_coord = camera_coord.transform_to(AltAz())
# transform back
altaz_coord2 = SkyCoord(az=altaz_coord.az, alt=altaz_coord.alt, frame=AltAz())
camera_coord2 = altaz_coord2.transform_to(camera_frame)
# check transform
assert np.isclose(camera_coord.x.to_value(u.m), camera_coord2.y.to_value(u.m))
示例2: test_all_to_value
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_all_to_value():
"""test all_to_value"""
x_m = np.arange(5) * u.m
y_mm = np.arange(5) * 1000 * u.mm
z_km = np.arange(5) * 1e-3 * u.km
nono_deg = np.arange(5) * 1000 * u.deg
# one argument
x = all_to_value(x_m, unit=u.m)
assert (x == np.arange(5)).all()
# two arguments
x, y = all_to_value(x_m, y_mm, unit=u.m)
assert (x == np.arange(5)).all()
assert (y == np.arange(5)).all()
# three
x, y, z = all_to_value(x_m, y_mm, z_km, unit=u.m)
assert (x == np.arange(5)).all()
assert (y == np.arange(5)).all()
assert (z == np.arange(5)).all()
# cannot be converted
with pytest.raises(u.UnitConversionError):
all_to_value(x_m, nono_deg, unit=x_m.unit)
示例3: test_blackbody_array_temperature
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_blackbody_array_temperature():
"""Regression test to make sure that the temperature can be an array."""
multibb = BlackBody([100, 200, 300] * u.K)
flux = multibb(1.2 * u.mm)
np.testing.assert_allclose(
flux.value, [1.804908e-12, 3.721328e-12, 5.638513e-12], rtol=1e-5
)
flux = multibb([2, 4, 6] * u.mm)
np.testing.assert_allclose(
flux.value, [6.657915e-13, 3.420677e-13, 2.291897e-13], rtol=1e-5
)
multibb = BlackBody(np.ones(4) * u.K)
flux = multibb(np.ones((3, 4)) * u.mm)
assert flux.shape == (3, 4)
示例4: test_ufunc_inplace_non_standard_dtype
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_ufunc_inplace_non_standard_dtype(self):
"""Check that inplace operations check properly for casting.
First two tests that check that float32 is kept close #3976.
"""
a1 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.float32)
a1 *= np.float32(10)
assert a1.unit is u.m
assert a1.dtype == np.float32
a2 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.float32)
a2 += (20.*u.km)
assert a2.unit is u.m
assert a2.dtype == np.float32
# For integer, in-place only works if no conversion is done.
a3 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.int32)
a3 += u.Quantity(10, u.m, dtype=np.int64)
assert a3.unit is u.m
assert a3.dtype == np.int32
a4 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.int32)
with pytest.raises(TypeError):
a4 += u.Quantity(10, u.mm, dtype=np.int64)
示例5: test_quantity_equality_error
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_quantity_equality_error():
"""Test equality for different quantity values."""
param1 = uvp.UVParameter(
name="p1", value=np.array([0, 1, 3]) * units.m, tols=1 * units.mJy
)
param2 = uvp.UVParameter(
name="p2",
value=units.Quantity([0 * units.cm, 100 * units.cm, 3000 * units.mm]),
tols=1 * units.mm,
)
with pytest.raises(units.UnitsError):
assert param1 == param2
示例6: test_quantity_inequality
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_quantity_inequality(vals, p2_atol):
param1 = uvp.UVParameter(
name="p1", value=np.array([0, 1, 3]) * units.m, tols=1 * units.mm
)
param2 = uvp.UVParameter(name="p2", value=vals, tols=p2_atol)
assert param1 != param2
示例7: rainfall_rate
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def rainfall_rate(lat, lon, p):
"""
A method to compute the rainfall rate exceeded for p% of the average year
Parameters
----------
lat : number, sequence, or numpy.ndarray
Latitudes of the receiver points
lon : number, sequence, or numpy.ndarray
Longitudes of the receiver points
p : number
Percentage of time exceeded for p% of the average year
Returns
-------
R001: numpy.ndarray
Rainfall rate exceeded for p% of the average year
References
----------
[1] Characteristics of precipitation for propagation modelling
https://www.itu.int/rec/R-REC-P.837/en
"""
global __model
type_output = type(lat)
lat = prepare_input_array(lat)
lon = prepare_input_array(lon)
lon = np.mod(lon, 360)
val = __model.rainfall_rate(lat, lon, p)
return prepare_output_array(val, type_output) * u.mm / u.hr
示例8: unavailability_from_rainfall_rate
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def unavailability_from_rainfall_rate(lat, lon, R):
"""
A method to estimate the percentage of time of the average year that a
given rainfall rate (R) is exceeded. This method calls successively to the
`rainfall_rate` method and interpolates its value.
Parameters
----------
lat : number, sequence, or numpy.ndarray
Latitudes of the receiver points
lon : number, sequence, or numpy.ndarray
Longitudes of the receiver points
R : number, sequence, or numpy.ndarray
Rainfall rate (mm/h)
Returns
-------
p: numpy.ndarray
Rainfall rate exceeded for p% of the average year
References
----------
[1] Characteristics of precipitation for propagation modelling
https://www.itu.int/rec/R-REC-P.837/en
"""
global __model
lat = prepare_input_array(lat)
lon = prepare_input_array(lon)
lon = np.mod(lon, 360)
# TODO: write this function
示例9: rain_specific_attenuation
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def rain_specific_attenuation(R, f, el, tau):
"""
A method to compute the specific attenuation γ_R (dB/km) from rain. The
value is obtained from hte rain rate R (mm/h) using a power law
relationship.
..math:
\\gamma_R = k R^\\alpha
Parameters
----------
R : number, sequence, numpy.ndarray or Quantity
Rain rate (mm/h)
f : number or Quantity
Frequency (GHz)
el : number, sequence, or numpy.ndarray
Elevation angle of the receiver points
tau : number, sequence, or numpy.ndarray
Polarization tilt angle relative to the horizontal (degrees). Tau = 45
deg for circular polarization)
Returns
-------
gamma_R: numpy.ndarray
Specific attenuation from rain (dB/km)
References
----------
[1] Rain height model for prediction methods:
https://www.itu.int/rec/R-REC-P.838/en
"""
global __model
R = prepare_quantity(R, u.mm / u.hr, 'Rain rate')
f = prepare_quantity(f, u.GHz, 'Frequency')
return __model.rain_specific_attenuation(R, f, el, tau) * u.dB / u.km
示例10: test_diffprop_matches_airydisk
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_diffprop_matches_airydisk(efl, epd, wvl):
fno = efl / epd
p = Pupil(dia=epd, xy_unit=u.mm, z_unit=u.nm, wavelength=mkwvl(wvl, u.um))
psf = PSF.from_pupil(p, efl, Q=3) # use Q=3 not Q=4 for improved accuracy
s = psf.slices()
u_, sx = s.x
u_, sy = s.y
analytic = airydisk(u_, fno, wvl)
assert np.allclose(sx, analytic, atol=PRECISION)
assert np.allclose(sy, analytic, atol=PRECISION)
示例11: test_diffprop_matches_analyticmtf
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_diffprop_matches_analyticmtf(efl, epd, wvl):
fno = efl / epd
p = Pupil(dia=epd, xy_unit=u.mm, z_unit=u.nm, wavelength=mkwvl(wvl, u.um))
psf = PSF.from_pupil(p, efl)
mtf = MTF.from_psf(psf)
s = mtf.slices()
u_, x = s.x
u__, y = s.y
analytic_1 = diffraction_limited_mtf(fno, wvl, frequencies=u_)
analytic_2 = diffraction_limited_mtf(fno, wvl, frequencies=u__)
assert np.allclose(analytic_1, x, atol=PRECISION)
assert np.allclose(analytic_2, y, atol=PRECISION)
示例12: synthesize_surface_from_psd
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def synthesize_surface_from_psd(psd, nu_x, nu_y):
"""Synthesize a surface height map from PSD data.
Parameters
----------
psd : `numpy.ndarray`
PSD data, units nm²/(cy/mm)²
nu_x : `numpy.ndarray`
x spatial frequency, cy/mm
nu_y : `numpy.ndarray`
y spatial frequency, cy_mm
"""
# generate a random phase to be matched to the PSD
randnums = e.random.rand(*psd.shape)
randfft = e.fft.fft2(randnums)
phase = e.angle(randfft)
# calculate the output window
# the 0th element of nu_y has the greatest frequency in magnitude because of
# the convention to put the nyquist sample at -fs instead of +fs for even-size arrays
fs = -2 * nu_y[0]
dx = dy = 1 / fs
ny, nx = psd.shape
x, y = e.arange(nx) * dx, e.arange(ny) * dy
# calculate the area of the output window, "S2" in GH_FFT notation
A = x[-1] * y[-1]
# use ifft to compute the PSD
signal = e.exp(1j * phase) * e.sqrt(A * psd)
coef = 1 / dx / dy
out = e.fft.ifftshift(e.fft.ifft2(e.fft.fftshift(signal))) * coef
out = out.real
return x, y, out
示例13: latcal
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def latcal(self, plate_scale, unit='mm'):
"""Perform lateral calibration.
This probably won't do what you want if your data already has spatial
units of anything but pixels (px).
Parameters
----------
plate_scale : `float`
center-to-center sample spacing of pixels, in (unit)s.
unit : `str`, optional
unit associated with the plate scale.
Returns
-------
self
modified `Interferogram` instance.
"""
self.strip_latcal()
unit = sanitize_unit(unit, self.wavelength)
self.xy_unit = unit
# sloppy to do this here...
self.x *= plate_scale
self.y *= plate_scale
return self
示例14: render_from_psd
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def render_from_psd(size, samples, rms=None, # NOQA
mask='circle', xyunit='mm', zunit='nm', psd_fcn=abc_psd, **psd_fcn_kwargs):
"""Render a synthetic surface with a given RMS value given a PSD function.
Parameters
----------
size : `float`
diameter of the output surface, mm
samples : `int`
number of samples across the output surface
rms : `float`
desired RMS value of the output, if rms=None, no normalization is done
mask : `str`, optional
mask defining the clear aperture
xyunit : `astropy.unit` or `str`, optional
astropy unit or string which satisfies hasattr(astropy.units, xyunit)
zunit : `astropy.unit` or `str`, optional
astropy unit or string which satisfies hasattr(astropy.units, xyunit)
psd_fcn : `callable`
function used to generate the PSD
**psd_fcn_kwargs:
keyword arguments passed to psd_fcn in addition to nu
if psd_fcn == abc_psd, kwargs are a, b, c
elif psd_Fcn == ab_psd kwargs are a, b
kwargs will be user-defined for user PSD functions
Returns
-------
`Interferogram`
new interferogram instance
"""
x, y, z = render_synthetic_surface(size=size, samples=samples, rms=rms,
mask=mask, psd_fcn=psd_fcn, **psd_fcn_kwargs)
return Interferogram(phase=z, x=x, y=y, xy_unit=xyunit, z_unit=zunit, wavelength=HeNe)
示例15: test_barycorr
# 需要导入模块: from astropy import units [as 别名]
# 或者: from astropy.units import mm [as 别名]
def test_barycorr():
# this is the result of calling _get_barycorr_bvcs
barycorr_bvcs = u.Quantity([
-10335.93326096, -14198.47605491, -2237.60012494, -14198.47595363,
-17425.46512587, -17131.70901174, 2424.37095076, 2130.61519166,
-17425.46495779, -19872.50026998, -24442.37091097, -11017.08975893,
6978.0622355, 11547.93333743, -1877.34772637, -19872.50004258,
-21430.08240017, -27669.14280689, -16917.08506807, 2729.57222968,
16476.49569232, 13971.97171764, -2898.04250914, -21430.08212368,
-22028.51337105, -29301.92349394, -21481.13036199, -3147.44828909,
14959.50065514, 22232.91155425, 14412.11903105, -3921.56359768,
-22028.51305781, -21641.01479409, -29373.0512649, -24205.90521765,
-8557.34138828, 10250.50350732, 23417.2299926, 24781.98057941,
13706.17339044, -4627.70005932, -21641.01445812, -20284.92627505,
-28193.91696959, -22908.51624166, -6901.82132125, 12336.45758056,
25804.51614607, 27200.50029664, 15871.21385688, -2882.24738355,
-20284.9259314, -18020.92947805, -25752.96564978, -20585.81957567,
-4937.25573801, 13870.58916957, 27037.31568441, 28402.06636994,
17326.25977035, -1007.62209045, -18020.92914212, -14950.33284575,
-22223.74260839, -14402.94943965, 3930.73265119, 22037.68163353,
29311.09265126, 21490.30070307, 3156.62229843, -14950.33253252,
-11210.53846867, -17449.59867676, -6697.54090389, 12949.11642965,
26696.03999586, 24191.5164355, 7321.50355488, -11210.53819218,
-6968.89359681, -11538.76423011, 1886.51695238, 19881.66902396,
24451.54039956, 11026.26000765, -6968.89336945, -2415.20201758,
-2121.44599781, 17434.63406085, 17140.87871753, -2415.2018495,
2246.76923076, 14207.64513054, 2246.76933194, 6808.40787728],
u.m/u.s)
# this tries the *other* way of calling radial_velocity_correction relative
# to the IRAF tests
targets = _get_test_input_radecs()
bvcs_astropy = targets.radial_velocity_correction(obstime=test_input_time,
location=test_input_loc,
kind='barycentric')
assert_quantity_allclose(bvcs_astropy, barycorr_bvcs, atol=10*u.mm/u.s)
return bvcs_astropy, barycorr_bvcs # for interactively examination