当前位置: 首页>>代码示例>>Python>>正文


Python amp.master_params方法代码示例

本文整理汇总了Python中apex.amp.master_params方法的典型用法代码示例。如果您正苦于以下问题:Python amp.master_params方法的具体用法?Python amp.master_params怎么用?Python amp.master_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在apex.amp的用法示例。


在下文中一共展示了amp.master_params方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: rescale_gradients

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def rescale_gradients(self) -> float:
        """
        Performs gradient rescaling. Is a no-op if gradient rescaling is not enabled.

        Returns the norm of the gradients.
        """
        if self._opt_level is not None:
            # See: https://nvidia.github.io/apex/advanced.html#gradient-clipping
            parameters_to_clip = [
                p for p in amp.master_params(self.optimizer) if p.grad is not None
            ]
        else:
            parameters_to_clip = [p for p in self.model.parameters() if p.grad is not None]
        if self._grad_norm:
            return clip_grad_norm_(parameters_to_clip, self._grad_norm)
        else:
            return torch.norm(
                torch.stack([torch.norm(p.grad.detach()) for p in parameters_to_clip])
            ) 
开发者ID:allenai,项目名称:allennlp,代码行数:21,代码来源:trainer.py

示例2: _make_step

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def _make_step(self):
        data, target = self.state.input
        output = self.state.model(data)
        self.state.output = output
        loss = self.state.criterion(output, target)
        if self.state.is_train:
            with amp.scale_loss(loss / self.accumulate_steps, self.state.optimizer) as scaled_loss:
                scaled_loss.backward()
            if self.gradient_clip_val > 0:
                torch.nn.utils.clip_grad_norm_(amp.master_params(self.state.optimizer), self.gradient_clip_val)
            if self.state.step % self.accumulate_steps == 0:
                self.state.optimizer.step()
                self.state.optimizer.zero_grad()
            torch.cuda.synchronize()

        # update metrics
        self.state.loss_meter.update(to_numpy(loss))
        with torch.no_grad():
            for metric, meter in zip(self.state.metrics, self.state.metric_meters):
                meter.update(to_numpy(metric(output, target).squeeze())) 
开发者ID:bonlime,项目名称:pytorch-tools,代码行数:22,代码来源:wrapper.py

示例3: save_state

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def save_state(self, save_directory: typing.Union[str, Path], epoch_id: int):
        save_directory = Path(save_directory)
        if not save_directory.exists():
            save_directory.mkdir()
        else:
            assert save_directory.is_dir(), "Save path should be a directory"
        model_to_save = getattr(self.model, 'module', self.model)
        model_to_save.save_pretrained(save_directory)
        optimizer_state: typing.Dict[str, typing.Any] = {
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict(),
            'epoch': epoch_id}
        if APEX_FOUND:
            optimizer_state['master params'] = list(amp.master_params(self.optimizer))
            try:
                optimizer_state['amp'] = amp.state_dict()
            except AttributeError:
                pass
        torch.save(optimizer_state, save_directory / 'checkpoint.bin') 
开发者ID:songlab-cal,项目名称:tape,代码行数:21,代码来源:training.py

示例4: backward_propagate

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def backward_propagate(self, loss, step):
        loss = self.adjust_loss(loss)
        if self.global_step % self.log_loss_every == 0 and self.local_rank in [-1, 0]:
            if self.local_rank in [-1, 0]:
                MlLogger.log_metrics(
                    {"Train_loss_total": float(loss.detach().cpu().numpy())},
                    step=self.global_step,
                )
                if self.log_learning_rate:
                    MlLogger.log_metrics({"learning_rate": self.lr_schedule.get_last_lr()[0]},
                                         step=self.global_step)
        if self.use_amp:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        if step % self.grad_acc_steps == 0:
            if self.max_grad_norm is not None:
                if self.use_amp:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
            self.optimizer.step()
            self.optimizer.zero_grad()
            if self.lr_schedule:
                self.lr_schedule.step()
        return loss 
开发者ID:deepset-ai,项目名称:FARM,代码行数:30,代码来源:train.py

示例5: on_backward_end

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def on_backward_end(self):
        if self.step%self.update_every==0:
            if self.parameters is None:
                if getattr(self.trainer, 'fp16', ''):
                    _check_fp16()
                    self.clip_fun(amp.master_params(self.optimizer), self.clip_value)
                else:
                    self.clip_fun(self.model.parameters(), self.clip_value)
            else:
                self.clip_fun(self.parameters, self.clip_value) 
开发者ID:fastnlp,项目名称:fastNLP,代码行数:12,代码来源:callback.py

示例6: train

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def train(train_step):
    train_loader = train_corpus.batch_generator()

    start_time = time.time()
    for batch, item in enumerate(train_loader):
        net.train()
        data, targets, word_cnt, batch_len = get_batch(item)

        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        optimizer.zero_grad()

        # Network
        logits, new_targets = net(data, targets)
        loss = F.cross_entropy(logits.view(-1, nsampled+1), new_targets)

        # AMP
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.clip)

        optimizer.step()
        scheduler.step(train_step)
        train_step += 1

        interval = 125
        if batch % interval == 0:
            elapsed = time.time() - start_time
            print('Epoch: {:3d} | {:5d}/{:5d} batches | lr {:.6f} | ms/batch {:5.2f} | loss {:5.2f} | ppl {:8.2f}'
                  .format(epoch, batch, batch_len, scheduler.get_lr()[0], elapsed * 1000 / interval, loss.item(), math.exp(loss.item())))
            start_time = time.time()
            sys.stdout.flush()
    return train_step

# Load the saved model. 
开发者ID:rdspring1,项目名称:Count-Sketch-Optimizers,代码行数:37,代码来源:transformer_main.py

示例7: optimize

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def optimize(self, loss):
        """
        Normalization on the loss (gradient accumulation or distributed training), followed by
        backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation).
        Also update the metrics for tensorboard.
        """
        # Check for NaN
        if (loss != loss).data.any():
            logger.error("NaN detected")
            exit()

        if self.multi_gpu:
            loss = loss.mean()
        if self.params.gradient_accumulation_steps > 1:
            loss = loss / self.params.gradient_accumulation_steps

        if self.fp16:
            from apex import amp

            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        self.iter()
        if self.n_iter % self.params.gradient_accumulation_steps == 0:
            if self.fp16:
                torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm)
            else:
                torch.nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm)
            self.optimizer.step()
            self.optimizer.zero_grad()
            self.scheduler.step() 
开发者ID:bhoov,项目名称:exbert,代码行数:35,代码来源:distiller.py

示例8: resume_from_checkpoint

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def resume_from_checkpoint(self, checkpoint_dir: str) -> int:
        checkpoint = torch.load(
            os.path.join(checkpoint_dir, 'checkpoint.bin'), map_location=self.device)
        self.optimizer.load_state_dict(checkpoint['optimizer'])
        if self.fp16:
            self.optimizer._lazy_init_maybe_master_weights()
            self.optimizer._amp_stash.lazy_init_called = True
            self.optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved in zip(
                    amp.master_params(self.optimizer), checkpoint['master params']):
                param.data.copy_(saved.data)
            amp.load_state_dict(checkpoint['amp'])
        self.scheduler.load_state_dict(checkpoint['scheduler'])
        start_epoch = checkpoint['epoch'] + 1
        return start_epoch 
开发者ID:songlab-cal,项目名称:tape,代码行数:17,代码来源:training.py

示例9: train_epoch

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def train_epoch(self, data):
        pbar = ProgressBar(n_total=len(data))
        tr_loss = AverageMeter()
        self.epoch_reset()
        for step,  batch in enumerate(data):
            self.batch_reset()
            self.model.train()
            batch = tuple(t.to(self.device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch
            print("input_ids, input_mask, segment_ids, label_ids SIZE: \n")
            print(input_ids.size(), input_mask.size(),
                  segment_ids.size(), label_ids.size())
            logits = self.model(input_ids, input_mask, segment_ids)
            print("logits and label ids size: ",
                  logits.size(), label_ids.size())
            loss = self.criterion(output=logits, target=label_ids)
            if len(self.n_gpu) >= 2:
                loss = loss.mean()
            if self.gradient_accumulation_steps > 1:
                loss = loss / self.gradient_accumulation_steps
            if self.fp16:
                with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                    scaled_loss.backward()
                clip_grad_norm_(amp.master_params(
                    self.optimizer), self.grad_clip)
            else:
                loss.backward()
                clip_grad_norm_(self.model.parameters(), self.grad_clip)
            if (step + 1) % self.gradient_accumulation_steps == 0:
                self.lr_scheduler.step()
                self.optimizer.step()
                self.optimizer.zero_grad()
                self.global_step += 1
            if self.batch_metrics:
                for metric in self.batch_metrics:
                    metric(logits=logits, target=label_ids)
                    self.info[metric.name()] = metric.value()
            self.info['loss'] = loss.item()
            tr_loss.update(loss.item(), n=1)
            if self.verbose >= 1:
                pbar.batch_step(step=step, info=self.info, bar_type='Training')
            self.outputs.append(logits.cpu().detach())
            self.targets.append(label_ids.cpu().detach())
        print("\n------------- train result --------------")
        # epoch metric
        self.outputs = torch.cat(self.outputs, dim=0).cpu().detach()
        self.targets = torch.cat(self.targets, dim=0).cpu().detach()
        self.result['loss'] = tr_loss.avg
        if self.epoch_metrics:
            for metric in self.epoch_metrics:
                metric(logits=self.outputs, target=self.targets)
                value = metric.value()
                if value:
                    self.result[f'{metric.name()}'] = value
        if "cuda" in str(self.device):
            torch.cuda.empty_cache()
        return self.result 
开发者ID:hscspring,项目名称:Multi-Label-Text-Classification-for-Chinese,代码行数:59,代码来源:trainer.py

示例10: _train_batch

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def _train_batch(self, args, step, inputs, labels, masker, eval_dataset, eval_masker, model):
        inputs = self._to(args, inputs)        
        labels = self._to(args, labels)
        
        model.train()
        loss = self._forward(args, inputs, labels, masker, model, backprop=True)

        self.tr_loss += loss.item()
        if (step + 1) % args.gradient_accumulation_steps == 0:
            if args.fp16:
                torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), args.max_grad_norm)
            else:
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            self.optimizer.step()
            self.scheduler.step()  # Update learning rate schedule
            model.zero_grad()
            self._post_training()
            self.global_step += 1
            
            if args.local_rank in [-1, 0] and args.logging_steps > 0 and self.global_step % args.logging_steps == 0:
                # Log metrics
                if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                    results = self.evaluate(args, eval_dataset, eval_masker, model)
                    for key, value in results.items():
                        self.tb_writer.add_scalar('eval_{}'.format(key), value, self.global_step)
                self._train_writer(args.logging_steps)

            if args.local_rank in [-1, 0] and args.save_steps > 0 and self.global_step % args.save_steps == 0:
                checkpoint_prefix = 'checkpoint'
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, self.global_step))
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                model_to_save.save_pretrained(output_dir)
                
                self.tokenizer.save_pretrained(output_dir)
                torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                logger.info("Saving model checkpoint to %s", output_dir)

                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                torch.save(self.scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                logger.info("Saving optimizer and scheduler states to %s", output_dir)

                self._rotate_checkpoints(args, checkpoint_prefix) 
开发者ID:howardhsu,项目名称:BERT-for-RRC-ABSA,代码行数:47,代码来源:trainer.py

示例11: train_batch

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def train_batch(self, batch, batch_info=None):
        args = self.args
        model = self.model
        optimizer = self.optimizer
        step = batch_info["batch_idx"]

        model.train()
        batch = tuple(t.to(self.device) for t in batch)
        inputs = {
            "input_ids": batch[0],
            "attention_mask": batch[1],
            "labels": batch[3]
        }
        if args.model_type != "distilbert":
            # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
            inputs["token_type_ids"] = (batch[2] if args.model_type in [
                "bert", "xlnet", "albert"
            ] else None)
        outputs = model(**inputs)

        # model outputs are always tuple in transformers (see doc)
        loss = outputs[0]

        if args.gradient_accumulation_steps > 1:
            loss = loss / args.gradient_accumulation_steps

        if args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        batch_loss = loss.item()

        # last step in epoch but step is always smaller
        # than gradient_accumulation_steps
        ending = (self.train_data_len <= args.gradient_accumulation_steps
                  and (step + 1) == self.train_data_len)
        if (step + 1) % args.gradient_accumulation_steps == 0 or ending:
            if args.fp16:
                torch.nn.utils.clip_grad_norm_(
                    amp.master_params(optimizer), args.max_grad_norm)
            else:
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               args.max_grad_norm)

            self.optimizer.step()
            self._warmup_scheduler.step()  # Update learning rate schedule
            model.zero_grad()
            self._global_step += 1

        learning_rate_scalar = self._warmup_scheduler.get_lr()[0]
        return {"learning_rate": learning_rate_scalar, "loss": batch_loss} 
开发者ID:ray-project,项目名称:ray,代码行数:55,代码来源:transformers_example.py

示例12: train_epoch

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def train_epoch(self,data):
        pbar = ProgressBar(n_total = len(data),desc='Training')
        tr_loss = AverageMeter()
        self.epoch_reset()
        for step,  batch in enumerate(data):
            self.batch_reset()
            self.model.train()
            batch = tuple(t.to(self.device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch
            logits = self.model(input_ids, segment_ids,input_mask)
            loss = self.criterion(output=logits,target=label_ids)
            if len(self.args.n_gpu) >= 2:
                loss = loss.mean()
            if self.args.gradient_accumulation_steps > 1:
                loss = loss / self.args.gradient_accumulation_steps
            if self.args.fp16:
                with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                    scaled_loss.backward()
                clip_grad_norm_(amp.master_params(self.optimizer), self.args.grad_clip)
            else:
                loss.backward()
                clip_grad_norm_(self.model.parameters(), self.args.grad_clip)
            if (step + 1) % self.args.gradient_accumulation_steps == 0:
                self.scheduler.step()
                self.optimizer.step()
                self.optimizer.zero_grad()
                self.global_step += 1
            if self.batch_metrics:
                for metric in self.batch_metrics:
                    metric(logits = logits,target = label_ids)
                    self.info[metric.name()] = metric.value()
            self.info['loss'] = loss.item()
            tr_loss.update(loss.item(),n = 1)
            if self.verbose >= 1:
                pbar(step= step,info = self.info)
            self.outputs.append(logits.cpu().detach())
            self.targets.append(label_ids.cpu().detach())
        print("\n------------- train result --------------")
        # epoch metric
        self.outputs = torch.cat(self.outputs, dim =0).cpu().detach()
        self.targets = torch.cat(self.targets, dim =0).cpu().detach()
        self.result['loss'] = tr_loss.avg
        if self.epoch_metrics:
            for metric in self.epoch_metrics:
                metric(logits=self.outputs, target=self.targets)
                value = metric.value()
                if value:
                    self.result[f'{metric.name()}'] = value
        if "cuda" in str(self.device):
            torch.cuda.empty_cache()
        return self.result 
开发者ID:lonePatient,项目名称:Bert-Multi-Label-Text-Classification,代码行数:53,代码来源:trainer.py

示例13: _step_distributed_fp16

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def _step_distributed_fp16(self) -> None:
        # manually allreduce gradients after all accumulation steps
        # check for Inf/NaN
        # 1. allocate an uninitialized buffer for flattened gradient
        scaler = _amp_state.loss_scalers[0]
        master_grads = [p.grad for p in amp.master_params(self.optimizer) if p.grad is not None]
        flat_grad_size = sum(p.numel() for p in master_grads)
        # allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else \
            # torch.float32
        allreduce_dtype = torch.float16
        flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
        # 2. combine unflattening and predivision of unscaled 'raw' gradient
        allreduced_views = apex_C.unflatten(flat_raw, master_grads)
        self._overflow_buf.zero_()
        amp_C.multi_tensor_scale(
            65536,
            self._overflow_buf,
            [master_grads, allreduced_views],
            scaler.loss_scale() / (
                torch.distributed.get_world_size() * self.gradient_accumulation_steps))
        # 3. sum gradient across ranks. Because of the predivision, this averages the gradient
        torch.distributed.all_reduce(flat_raw)
        # 4. combine unscaling and unflattening of allreduced gradient
        self._overflow_buf.zero_()
        amp_C.multi_tensor_scale(
            65536,
            self._overflow_buf,
            [allreduced_views, master_grads],
            1. / scaler.loss_scale())
        # 5. update loss scale
        scaler = _amp_state.loss_scalers[0]
        old_overflow_buf = scaler._overflow_buf
        scaler._overflow_buf = self._overflow_buf
        had_overflow = scaler.update_scale()
        scaler._overfloat_buf = old_overflow_buf
        # 6. call optimizer step function
        if had_overflow == 0:
            self._step()
        else:
            # Overflow detected, print message and clear gradients
            logger.info(f"Gradient overflow.  Skipping step, reducing loss scale to "
                        f"{scaler.loss_scale()}")
            if _amp_state.opt_properties.master_weights:
                for param in self.optimizer._amp_stash.all_fp32_from_fp16_params:
                    param.grad = None
        for param in self.model.parameters():
            param.grad = None 
开发者ID:songlab-cal,项目名称:tape,代码行数:49,代码来源:training.py

示例14: train

# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import master_params [as 别名]
def train(epoch, model, optimizer, scheduler):
    global global_step

    epoch_loss = 0.0
    running_num = 0
    running_loss = np.zeros(3)

    train_sampler.set_epoch(epoch)
    model.train()

    bar = tqdm(train_loader) if args.local_rank == 0 else train_loader

    for batch_idx, (x, c) in enumerate(bar):

        scheduler.step()
        global_step += 1

        x, c = x.to(device, non_blocking=True), c.to(device, non_blocking=True)

        optimizer.zero_grad()

        log_p, logdet = model(x, c)
        log_p, logdet = torch.mean(log_p), torch.mean(logdet)

        loss = -(log_p + logdet)

        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()

        nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1.)
         
        optimizer.step()

        running_num += 1
        running_loss[0] += loss.item()
        running_loss[1] += log_p.item()
        running_loss[2] += logdet.item()

        epoch_loss += loss.item()

        if args.local_rank == 0:
            bar.set_description('{}/{}, [Log pdf, Log p(z), Log Det] : {}'
                                .format(epoch, global_step, running_loss / running_num))
            if (batch_idx + 1) % 100 == 0:
                running_num = 0
                running_loss = np.zeros(3)

        del x, c, log_p, logdet, loss
    del running_loss
    gc.collect()
    print('{}/{}/{} Training Loss : {:.4f}'.format(epoch, global_step, args.local_rank, epoch_loss / (len(train_loader))))
    return epoch_loss / len(train_loader) 
开发者ID:ksw0306,项目名称:FloWaveNet,代码行数:54,代码来源:train_apex.py


注:本文中的apex.amp.master_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。