本文整理汇总了Python中apex.amp.initialize方法的典型用法代码示例。如果您正苦于以下问题:Python amp.initialize方法的具体用法?Python amp.initialize怎么用?Python amp.initialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类apex.amp
的用法示例。
在下文中一共展示了amp.initialize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_gradient_accumulation_with_apex_amp
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def test_gradient_accumulation_with_apex_amp(self, mocker):
desired_bs, accum_steps = 32, 4
real_bs = desired_bs // accum_steps
num_iter = 10
task = mod_task.XORTask(batch_size=real_bs)
# Wrap model and optimizer by `amp.initialize`. Beside, `amp` requires
# CUDA GPU. So we have to move model to GPU first.
model, optimizer, device = task.model, task.optimizer, task.device
model = model.to(device)
task.model, task.optimizer = amp.initialize(model, optimizer)
lr_finder = prepare_lr_finder(task)
spy = mocker.spy(amp, "scale_loss")
lr_finder.range_test(
task.train_loader, num_iter=num_iter, accumulation_steps=accum_steps
)
assert spy.call_count == accum_steps * num_iter
示例2: test_mixed_precision
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def test_mixed_precision(self, mocker):
batch_size = 32
num_iter = 10
task = mod_task.XORTask(batch_size=batch_size)
# Wrap model and optimizer by `amp.initialize`. Beside, `amp` requires
# CUDA GPU. So we have to move model to GPU first.
model, optimizer, device = task.model, task.optimizer, task.device
model = model.to(device)
task.model, task.optimizer = amp.initialize(model, optimizer)
assert hasattr(task.optimizer, "_amp_stash")
lr_finder = prepare_lr_finder(task)
spy = mocker.spy(amp, "scale_loss")
lr_finder.range_test(task.train_loader, num_iter=num_iter)
# NOTE: Here we did not perform gradient accumulation, so that call count
# of `amp.scale_loss` should equal to `num_iter`.
assert spy.call_count == num_iter
示例3: initialize
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def initialize(model, optimizers):
"""Initialize mixed precision
Arguments:
model {nn.Module} -- The model to convert
optimizers -- The model
Returns:
[nn.Module, Optimizer] -- Converted model and optimizer
"""
if is_mixed_precision():
from apex import amp
if optimizers is not None:
model, optimizers = \
amp.initialize(model, optimizers, opt_level=get_optim_level())
else:
model = amp.initialize(model, opt_level=get_optim_level())
return model, optimizers
示例4: test_larc_mixed_precision
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def test_larc_mixed_precision(self):
for opt_level in ["O0", "O1", "O2", "O3"]:
model = MyModel(1)
optimizer = LARC(
torch.optim.SGD(
[{"params": model.parameters(), "lr": 0.25}], momentum=0.125
)
)
model, optimizer = amp.initialize(
model, optimizer, opt_level=opt_level, verbosity=0
)
optimizer.zero_grad()
loss = model(self.x)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
示例5: predict
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def predict(args, model):
"""Entrypoint for predict mode"""
test_loader = dataset.get_test_loader(args)
train_loader, val_loader = dataset.get_train_val_loader(args, predict=True)
if args.fp16:
model = amp.initialize(model, opt_level='O1')
logging.info('Starting prediction')
output = {}
for k, loader in [('test', test_loader),
('val', val_loader)]:
output[k] = {}
res = infer(args, model, loader)
for i, v in res.items():
d = loader.dataset.data[i]
name = '{}_{}_{}'.format(d[0], d[1], d[2])
if name not in output[k]:
output[k][name] = []
output[k][name].append(v)
logging.info('Saving predictions to {}'.format(args.load + '.output' + args.pred_suffix))
with open(args.load + '.output' + args.pred_suffix, 'wb') as file:
pickle.dump(output, file)
示例6: _init_amp
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def _init_amp(model, device, optimizer=None, use_amp=None):
model = model.to(device)
if use_amp and optimizer:
if AMP_AVAILABLE:
model, optimizer = amp.initialize(model, optimizer, opt_level=use_amp)
else:
logger.warning(f"Can't find AMP although you specificed to use amp with level {use_amp}. Will continue without AMP ...")
return model, optimizer
示例7: setup
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def setup(rank, world_size, offset=0):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(12355+offset)
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
# Explicitly setting seed to make sure that models created in two processes
# start from same random weights and biases.
torch.manual_seed(42)
示例8: prepare_for_training
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def prepare_for_training(args, model, checkpoint_state_dict, amp):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if amp:
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if checkpoint_state_dict:
amp.load_state_dict(checkpoint_state_dict['amp'])
if checkpoint_state_dict:
optimizer.load_state_dict(checkpoint_state_dict['optimizer'])
model.load_state_dict(checkpoint_state_dict['model'])
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
return model, optimizer
示例9: __init__
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def __init__(
self, model, optimizer, criterion, metrics=None, callbacks=ConsoleLogger(), gradient_clip_val=0, accumulate_steps=1,
):
super().__init__()
if not hasattr(amp._amp_state, "opt_properties"):
model_optimizer = amp.initialize(model, optimizer, enabled=False)
model, optimizer = (model_optimizer, None) if optimizer is None else model_optimizer
self.state = RunnerState(model=model, optimizer=optimizer, criterion=criterion, metrics=metrics,)
self.callbacks = Callbacks(callbacks)
self.callbacks.set_state(self.state)
self.gradient_clip_val = gradient_clip_val
self.accumulate_steps = accumulate_steps
示例10: load_checkpoint
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def load_checkpoint(self):
try:
map_location = "cuda:0" if torch.cuda.is_available() else "cpu"
ckpt = load_checkpoint(self.checkpoint_dir,
map_location=map_location)
# Transition settings
self.is_transitioning = ckpt["is_transitioning"]
self.transition_step = ckpt["transition_step"]
self.current_imsize = ckpt["current_imsize"]
self.latest_switch = ckpt["latest_switch"]
# Tracking stats
self.global_step = ckpt["global_step"]
self.start_time = time.time() - ckpt["total_time"] * 60
self.num_skipped_steps = ckpt["num_skipped_steps"]
# Models
self.discriminator.load_state_dict(ckpt['D'])
self.generator.load_state_dict(ckpt['G'])
self.running_average_generator.load_state_dict(
ckpt["running_average_generator"])
to_cuda([self.generator, self.discriminator,
self.running_average_generator])
self.running_average_generator = amp.initialize(self.running_average_generator,
None, opt_level=self.opt_level)
self.init_optimizers()
self.d_optimizer.load_state_dict(ckpt['d_optimizer'])
self.g_optimizer.load_state_dict(ckpt['g_optimizer'])
return True
except FileNotFoundError as e:
print(e)
print(' [*] No checkpoint!')
return False
示例11: init_running_average_generator
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def init_running_average_generator(self):
self.running_average_generator = Generator(self.pose_size,
self.start_channel_size,
self.image_channels)
self.running_average_generator = wrap_models(
self.running_average_generator)
to_cuda(self.running_average_generator)
self.running_average_generator = amp.initialize(self.running_average_generator,
None, opt_level=self.opt_level)
示例12: extend_running_average_generator
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def extend_running_average_generator(self):
g = self.running_average_generator
g.extend()
for avg_param, cur_param in zip(g.new_parameters(), self.generator.new_parameters()):
assert avg_param.data.shape == cur_param.data.shape, "AVG param: {}, cur_param: {}".format(
avg_param.shape, cur_param.shape)
avg_param.data = cur_param.data
to_cuda(g)
self.running_average_generator = amp.initialize(
self.running_average_generator, None, opt_level=self.opt_level)
示例13: initialize_amp
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def initialize_amp(self):
to_cuda([self.generator, self.discriminator])
[self.generator, self.discriminator], [self.g_optimizer, self.d_optimizer] = amp.initialize(
[self.generator, self.discriminator],
[self.g_optimizer, self.d_optimizer],
opt_level=self.opt_level,
num_losses=4)
示例14: _try_setup_apex
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def _try_setup_apex(self):
"""Sets up the model for fp16 training via apex if available."""
if self.use_fp16 and amp:
self.models, self.optimizers = amp.initialize(
self.models, self.optimizers, **self.apex_args)
示例15: main
# 需要导入模块: from apex import amp [as 别名]
# 或者: from apex.amp import initialize [as 别名]
def main(mel_files, waveglow_path, sigma, output_dir, sampling_rate, is_fp16,
denoiser_strength):
mel_files = files_to_list(mel_files)
waveglow = torch.load(waveglow_path)['model']
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow.cuda().eval()
if is_fp16:
from apex import amp
waveglow, _ = amp.initialize(waveglow, [], opt_level="O3")
if denoiser_strength > 0:
denoiser = Denoiser(waveglow).cuda()
for i, file_path in enumerate(mel_files):
file_name = os.path.splitext(os.path.basename(file_path))[0]
mel = torch.load(file_path)
mel = torch.autograd.Variable(mel.cuda())
mel = torch.unsqueeze(mel, 0)
mel = mel.half() if is_fp16 else mel
with torch.no_grad():
audio = waveglow.infer(mel, sigma=sigma)
if denoiser_strength > 0:
audio = denoiser(audio, denoiser_strength)
audio = audio * MAX_WAV_VALUE
audio = audio.squeeze()
audio = audio.cpu().numpy()
audio = audio.astype('int16')
audio_path = os.path.join(
output_dir, "{}_synthesis.wav".format(file_name))
write(audio_path, sampling_rate, audio)
print(audio_path)