本文整理汇总了Python中altair.value方法的典型用法代码示例。如果您正苦于以下问题:Python altair.value方法的具体用法?Python altair.value怎么用?Python altair.value使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类altair
的用法示例。
在下文中一共展示了altair.value方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_infer_encoding_types
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def test_infer_encoding_types(channels):
expected = dict(
x=channels.X("xval"),
y=channels.YValue("yval"),
strokeWidth=channels.StrokeWidthValue(value=4),
)
# All positional args
args, kwds = _getargs(
channels.X("xval"), channels.YValue("yval"), channels.StrokeWidthValue(4)
)
assert infer_encoding_types(args, kwds, channels) == expected
# All keyword args
args, kwds = _getargs(x="xval", y=alt.value("yval"), strokeWidth=alt.value(4))
assert infer_encoding_types(args, kwds, channels) == expected
# Mixed positional & keyword
args, kwds = _getargs(
channels.X("xval"), channels.YValue("yval"), strokeWidth=alt.value(4)
)
assert infer_encoding_types(args, kwds, channels) == expected
示例2: altair_step_matrix
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def altair_step_matrix(diff, plot_name=None, title='', vmin=None, vmax=None, font_size=12, **kwargs):
heatmap_data = diff.reset_index().melt('index')
heatmap_data.columns = ['y', 'x', 'z']
table = alt.Chart(heatmap_data).encode(
x=alt.X('x:O', sort=None),
y=alt.Y('y:O', sort=None)
)
heatmap = table.mark_rect().encode(
color=alt.Color(
'z:Q',
scale=alt.Scale(scheme='blues'),
)
)
text = table.mark_text(
align='center', fontSize=font_size
).encode(
text='z',
color=alt.condition(
abs(alt.datum.z) < 0.8,
alt.value('black'),
alt.value('white'))
)
heatmap_object = (heatmap + text).properties(
width=3 * font_size * len(diff.columns),
height=2 * font_size * diff.shape[0]
)
return heatmap_object, plot_name, None, diff.retention.retention_config
示例3: test_infer_dtype
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def test_infer_dtype(value, expected_type):
assert infer_dtype(value) == expected_type
示例4: test_infer_encoding_types_with_condition
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def test_infer_encoding_types_with_condition(channels):
args, kwds = _getargs(
x=alt.condition("pred1", alt.value(1), alt.value(2)),
y=alt.condition("pred2", alt.value(1), "yval"),
strokeWidth=alt.condition("pred3", "sval", alt.value(2)),
)
expected = dict(
x=channels.XValue(2, condition=channels.XValue(1, test="pred1")),
y=channels.Y("yval", condition=channels.YValue(1, test="pred2")),
strokeWidth=channels.StrokeWidthValue(
2, condition=channels.StrokeWidth("sval", test="pred3")
),
)
assert infer_encoding_types(args, kwds, channels) == expected
示例5: area
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def area(self) -> float:
"""Returns the area of the shape, in square meters.
The shape is projected to an equivalent local projection before
computing a value.
"""
return self.project_shape().area
# --- Representations ---
示例6: geoencode
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def geoencode(self) -> alt.Chart: # coverage: ignore
"""Returns an `altair <http://altair-viz.github.io/>`_ encoding of the
shape to be composed in an interactive visualization.
"""
return (
alt.Chart(self.data)
.mark_circle()
.encode(
longitude="longitude:Q",
latitude="latitude:Q",
size=alt.value(3),
color=alt.value("steelblue"),
)
)
示例7: airline_chart
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def airline_chart(
source: alt.Chart, subset: List[str], name: str, loess=True
) -> alt.Chart:
chart = source.transform_filter(
alt.FieldOneOfPredicate(field="airline", oneOf=subset)
)
highlight = alt.selection(
type="single", nearest=True, on="mouseover", fields=["airline"]
)
points = (
chart.mark_point()
.encode(
x="day",
y=alt.Y("rate", title="# of flights (normalized)"),
color=alt.Color("airline", legend=alt.Legend(title=name)),
tooltip=["day", "airline", "count"],
opacity=alt.value(0.3),
)
.add_selection(highlight)
)
lines = chart.mark_line().encode(
x="day",
y="rate",
color="airline",
size=alt.condition(~highlight, alt.value(1), alt.value(3)),
)
if loess:
lines = lines.transform_loess(
"day", "rate", groupby=["airline"], bandwidth=0.2
)
return lines + points
示例8: airport_chart
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def airport_chart(source: alt.Chart, subset: List[str], name: str) -> alt.Chart:
chart = source.transform_filter(
alt.FieldOneOfPredicate(field="airport", oneOf=subset)
)
highlight = alt.selection(
type="single", nearest=True, on="mouseover", fields=["airport"]
)
points = (
chart.mark_point()
.encode(
x="day",
y=alt.Y("count", title="# of departing flights"),
color=alt.Color("airport", legend=alt.Legend(title=name)),
tooltip=["day", "airport", "city", "count"],
opacity=alt.value(0.3),
)
.add_selection(highlight)
)
lines = (
chart.mark_line()
.encode(
x="day",
y="count",
color="airport",
size=alt.condition(~highlight, alt.value(1), alt.value(3)),
)
.transform_loess("day", "count", groupby=["airport"], bandwidth=0.2)
)
return lines + points
示例9: mirror
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def mirror(spec_top: MsmsSpectrum, spec_bottom: MsmsSpectrum,
spectrum_kws: Optional[Dict] = None, *_) -> altair.LayerChart:
"""
Mirror plot two MS/MS spectra.
Parameters
----------
spec_top : MsmsSpectrum
The spectrum to be plotted on the top.
spec_bottom : MsmsSpectrum
The spectrum to be plotted on the bottom.
spectrum_kws : Optional[Dict], optional
Keyword arguments for `iplot.spectrum`.
*_
Ignored, for consistency with the `plot.mirror` API.
Returns
-------
altair.LayerChart
The Altair chart instance with the plotted spectrum.
"""
if spectrum_kws is None:
spectrum_kws = {}
# Top spectrum.
spec_plot = spectrum(spec_top, mirror_intensity=False, **spectrum_kws)
# Mirrored bottom spectrum.
spec_plot += spectrum(spec_bottom, mirror_intensity=True, **spectrum_kws)
spec_plot += (altair.Chart(pd.DataFrame({'sep': [0]}))
.mark_rule(size=3).encode(
y='sep', color=altair.value('lightGray')))
return spec_plot
示例10: heatmap
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def heatmap(data, vmin=None, vmax=None, annot=None, fmt='.2g'):
# We always want to have a DataFrame with semantic information
if not isinstance(data, pd.DataFrame):
matrix = np.asarray(data)
data = pd.DataFrame(matrix)
melted = data.stack().reset_index(name='Value')
x = data.columns.name
y = data.index.name
heatmap = alt.Chart(melted).mark_rect().encode(
alt.X('{x}:O'.format(x=x), scale=alt.Scale(paddingInner=0)),
alt.Y('{y}:O'.format(y=y), scale=alt.Scale(paddingInner=0)),
color='Value:Q'
)
if not annot:
return heatmap
# Overlay text
text = alt.Chart(melted).mark_text(baseline='middle').encode(
x='{x}:O'.format(x=x),
y='{y}:O'.format(y=y),
text=alt.Text('Value', format=fmt),
color=alt.condition(alt.expr.datum['Value'] > 70,
alt.value('black'),
alt.value('white'))
)
return heatmap + text
示例11: line
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def line(self, alpha=None, width=450, height=300, ax=None, **kwds):
"""Line plot for Series data
>>> series.vgplot.line() # doctest: +SKIP
Parameters
----------
alpha : float, optional
transparency level, 0 <= alpha <= 1
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
ax: altair.Chart, optional
chart to be overlayed with this vis (convinience method for `chart1 + chart2`)
Returns
-------
chart : altair.Chart
The altair plot representation
"""
df = self._data.reset_index()
df.columns = map(str, df.columns)
x, y = df.columns
chart = self._plot(
data=df,
width=width,
height=height,
title=kwds.pop("title", ""),
figsize=kwds.pop("figsize", None),
dpi=kwds.pop("dpi", None),
)
chart = chart.mark_line().encode(x=_x(x, df), y=_y(y, df))
if alpha is not None:
assert 0 <= alpha <= 1
chart = chart.encode(opacity=alt.value(alpha))
if ax is not None:
return ax + chart
warn_if_keywords_unused("line", kwds)
return chart
示例12: area
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def area(self, alpha=None, width=450, height=300, ax=None, **kwds):
"""Area plot for Series data
>>> series.vgplot.area() # doctest: +SKIP
Parameters
----------
alpha : float, optional
transparency level, 0 <= alpha <= 1
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
ax: altair.Chart, optional
chart to be overlayed with this vis (convinience method for `chart1 + chart2`)
Returns
-------
chart : alt.Chart
altair chart representation
"""
df = self._data.reset_index()
df.columns = map(str, df.columns)
x, y = df.columns
chart = self._plot(
data=df,
width=width,
height=height,
title=kwds.pop("title", ""),
figsize=kwds.pop("figsize", None),
dpi=kwds.pop("dpi", None),
).mark_area().encode(
x=_x(x, df), y=_y(y, df)
)
if alpha is not None:
assert 0 <= alpha <= 1
chart = chart.encode(opacity=alt.value(alpha))
if ax is not None:
return ax + chart
warn_if_keywords_unused("area", kwds)
return chart
示例13: bar
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def bar(self, alpha=None, width=450, height=300, ax=None, **kwds):
"""Bar plot for Series data
>>> series.vgplot.bar() # doctest: +SKIP
Parameters
----------
alpha : float, optional
transparency level, 0 <= alpha <= 1
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
ax: altair.Chart, optional
chart to be overlayed with this vis (convinience method for `chart1 + chart2`)
Returns
-------
chart : alt.Chart
altair chart representation
"""
df = self._data.reset_index()
df.columns = map(str, df.columns)
x, y = df.columns
chart = self._plot(
data=df,
width=width,
height=height,
title=kwds.pop("title", ""),
figsize=kwds.pop("figsize", None),
dpi=kwds.pop("dpi", None),
).mark_bar().encode(
x=_x(x, df), y=_y(y, df)
)
if alpha is not None:
assert 0 <= alpha <= 1
chart = chart.encode(opacity=alt.value(alpha))
if ax is not None:
return ax + chart
warn_if_keywords_unused("bar", kwds)
return chart
示例14: scatter
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def scatter(
self, x, y, c=None, s=None, alpha=None, width=450, height=300, ax=None, **kwds
):
"""Scatter plot for DataFrame data
>>> dataframe.vgplot.scatter(x, y) # doctest: +SKIP
Parameters
----------
x : string
the column to use as the x-axis variable.
y : string
the column to use as the y-axis variable.
c : string, optional
the column to use to encode the color of the points
s : string, optional
the column to use to encode the size of the points
alpha : float, optional
transparency level, 0 <= alpha <= 1
width : int, optional
the width of the plot in pixels
height : int, optional
the height of the plot in pixels
ax: altair.Chart, optional
chart to be overlayed with this vis (convinience method for `chart1 + chart2`)
Returns
-------
chart : alt.Chart
altair chart representation
"""
df = self._data
chart = self._plot(
width=width,
height=height,
title=kwds.pop("title", ""),
figsize=kwds.pop("figsize", None),
dpi=kwds.pop("dpi", None),
).mark_point().encode(
x=_x(x, df, ordinal_threshold=0), y=_y(y, df, ordinal_threshold=0)
)
if alpha is not None:
assert 0 <= alpha <= 1
chart = chart.encode(opacity=alt.value(alpha))
if c is not None:
chart.encoding["color"] = {"field": c, "type": infer_vegalite_type(df[c])}
if s is not None:
chart.encoding["size"] = {"field": s, "type": infer_vegalite_type(df[s])}
if ax is not None:
return ax + chart
warn_if_keywords_unused("scatter", kwds)
return chart
示例15: boxplot_vertical
# 需要导入模块: import altair [as 别名]
# 或者: from altair import value [as 别名]
def boxplot_vertical(x=None, y=None, hue=None, data=None, order=None):
# orientation_mapper = {'v': {'x': 'x', 'y': 'y'},
# 'h': {'x': 'y', 'y': 'x'}}
# Define aggregate fields
lower_box = 'q1({value}):Q'.format(value=y)
lower_whisker = 'min({value}):Q'.format(value=y)
upper_box = 'q3({value}):Q'.format(value=y)
upper_whisker = 'max({value}):Q'.format(value=y)
kwargs = {'x': '{x}:O'.format(x=x)}
if hue is not None:
kwargs['color'] = '{hue}:N'.format(hue=hue)
# Swap x for column
column, kwargs['x'] = kwargs['x'], '{hue}:N'.format(hue=hue)
base = alt.Chart().encode(
**kwargs
)
# Compose each layer individually
lower_whisker = base.mark_rule().encode(
y=alt.Y(lower_whisker, axis=alt.Axis(title=y)),
y2=lower_box,
)
middle_bar_kwargs = dict(
y=lower_box,
y2=upper_box,
)
if hue is None:
middle_bar_kwargs['color'] = 'year:O'
middle_bar = base.mark_bar(size=10.0).encode(**middle_bar_kwargs)
upper_whisker = base.mark_rule().encode(
y=upper_whisker,
y2=upper_box,
)
middle_tick = base.mark_tick(
color='white',
size=10.0
).encode(
y='median({value}):Q'.format(value=y),
)
chart = (lower_whisker + upper_whisker + middle_bar + middle_tick)
if hue is None:
chart.data = data
return chart
else:
return chart.facet(column=column, data=data)